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1. INTRODUCTION

Piecewise linear structures aonsisting of beams and

columns are among the most widely used and de-

signed. Widespread computer usage in engineering
offices allows us to now take into account the non-
linear behavior of structures and to gain a better
idea of the actual safety factor against failure.
Moreover, in some cases, such as the stability anal-
ysis of unbraced frames, second-order computa-
tions are compulsorily prescribed by constructiôn
codes. For materials like reinforced concrete, non-
linear behavior produced by the material itself ex-
ists already for loads of the magnitude of the service
loads and carefull assessment of the nonlinear ma-

terial effects (for instance, tension stiffening or
creep) is necessary for checking the serviceability
limit states.

With the advance of computer-aided design, a
growing demand thus exists for general-purpose
programs ofanalysis offramed structures, and they
have to be flexible enough to treat various materials
(composite structures) and to give a fine response
of the structure to various limit states (ultimate,

buckling, serviceability).
Up to now, such programs were scarce. Even in

large standard FEM codes, combined plasticity and

large displacements are not always treated rigor-
ously. Reinforced concrete models in such pro-
grams are generally not suitable for beam/column
engineering analysis. On the other hand, office de-

sign programs are often too specialized, and their
applicability is frequently restricted by theoretical
assumptions and by the hypotheses regarding the
physical behavior of the model.

The beam element developed here is presented

in a general displacement approach but is simple
enough to be used in structural engineering practice

and does not suffer from the theoretical drawbacks

of some of its predecessors.
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2. THE SHAPE FUNCTIONS O['THE BEAM ELEMENT

The usual beam element in most codes is shown
in Fig. I with only the six-d.o.f. (degrees of free-
dom) qr, Qz, Qz, Qq, Qs, q6atlhe boundaries ofthe
element. The shape functions underlying the dis-

placement field of this element are complete po-

lynomials of the third order for the transverse dis-
placement t and of the first order for the

longitudinal displacement z.
Let uibe the Cartesian component of the incre-

mental displacement of a point (.r, y) in the fth di-
rection. The standard FEM displacement approach
assumes that ui is a function of the incremental
nodal displacements 4À chosen as unknowns.

6

ui : ) N'çqp, ut : ü, üz = a. (1)
k:l

The generalised Navier-Bernoulli hypothests
regarding the planarity ofthe sections after bending
states that

du
u(x,Y) = uo(x,ÿ -- 0) - Yù' (2)

When the local x-axis does not coincide with the

tine of the centroidsT of the sections, this relation-
ship implies that the difference between the order
of the polynomials for u and u is only one, not two.

In material nonlinear behavior, it is quite clear
that the centroid moves across the depth ofthe sec-

tion during the loading process and we can conclude
that the use of the traditional shape functions of the

six-d.o.f. beam element would theoretically be in-

consistent, in plasticity, with the most important

t The centroid of the section is the point such that Kt
: 0 in eqns (1 l), when y : 0 is the ordinate of the centroid'
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hypothesis (and experimental evidence). This rs

why Blaauwendraadlll and Aldstedt and Bergan[2]
after him have introduced a seventh d.o.f., namely
a tangential displacement at midlength of the beam
element so that the order of the displacement field
for a would be raised to the second.

Nevertheless, this solution could practically
prove insufficient in some cases for the following
reasons. In a far advanced material nonlinear state,
plastic deformations concentrate in critical sections

and suppose also that u and u are polynomial func-
tions of the unknowns q;:

Identifying (3) and (4) with respect to the kinematic
boundary conditions and with (2), we get the nec-
essary shape functions

{;} 
: 

i*+ ili ill ::: ilàl i;,} (4,

Ë - xlL,

Nl : (2 - llË + t8Ë2 -9Ë\12,
Nl:nQ}Ë-54Ë'+32{),
Nl : y(8t - 15Ë'+ 8Ë3 - l),
Nl: eË-eE2 +eË\tz,
Nl:rr(loË-42{+32Ë3),
Nà : y(- 2t + e( - 8€'),
N+:(r8Ë-4s*+27Ë\t2,
NÀ : r(- 32Ë + 96Ë2 - 64Ë',),

NÀ : (- eË + 36Ë2 - 27Ë\t2,

, : ylL. (5)

N?:0,
Ni:t-fiË'+18Ër-8Ë4,
N1 : L(Ë - 4Ë', + SË', - 2Ëo),

N?:0,
N3 : (- 5Ë2 + l4Ë3 - 8Ëo),

NZ: t(É' - 3Ë3 + 2Ë4),

N;:0,
N3: l6t'z - 32Ë' + 1614,

N3:0.

(plastic hinges) where the curvature varies sharply
along the beam. If one wishes to use as few ele-
ments as possible to represent the whole structure,
it is probable that a seven-d.o.f. element with its
associated linear curvature field will only preduce
a rough image of the reality. Secondly, it will be
seen here that taking into account the geometrical
nonlinear effects and evaluating the nodal forces
equivalent to the internal stresses (what is made

compulsory in the iterative solution process of the
nonlinear system of equilibrium equations) require
precise knowledge of the stress-strain distribution
in the sections of numerical integration. Through
the stress-strain relationship of the materials, the
stresses depend explicitly on the order of the dis-
placement field, which is itself physically related to
the load distribution acting upon the element.

The preceding remarks led us to develop the the-
ory of a nine-d.o.f. beam element (Fig. 1), where
the transverse displacement field zr would be a com-
plete polynomial of the fourth order in x, and the
longitudinal displacement field z a third-order po-
lynomial in x (the choice of the longitudinal position
of the intermediate d.o.f. 4.t, es, qe is arbitrary).

Such an assumed displacement field is consis-
tent with a constant distributed transverse and tan-
gential load and bring on a second-order curvature
field which is accurate enough to represent parts of
beams and columns in a material nonlinear state.

Let u and u be defined as

: tto * u1x I a2x2 1 ct3x3,

: Êo + S1x * p2x2 * Ê:x3 * gqxa

The development of the nine-d.o.f. beam element
could sound strange to the structural engineer who
knows perfectly well that the shape and order of
the generalised stress distributions (i.e. bending
moment, shear and normal forces) are given by stat-
ics and that only six usual kinematical quantities
(qr, . . . , qu) are necessary to completely describe
the motion of the beam element. In fact, the ad-
ditional d.o.f. q1, es, es are dummy, in the sense

that, connecting no other element, they can be ex-
pressed as functions of the boundary d.o.f. and
eliminated in the equations of equilibrium of the
element.

Since we want to deal with structures with a rel-
atively high slenderness ratio or with massive sec-

u

ü

original conf iguration

(3)

Fig. 1. The nine-d.o.f. beam element.
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(8)

tions (like most reinforced concrete sections), the
influence of shear deformations may be disre-
graded.

3. NONLINEAR INCREMENTAL FORMULATION

The general nonlinear formulation adopted here
is the one developed by Bathe, called updated La-
grangian[3-5], better named approximated updated
Lagrangian according to Frey[6], when dealing with
small strains and oriented structures like beams,
plates and shells. The reader is referred to the pa-
pers by Bathe for the notation; for the sake of
brevity, we only mention that a left superscript de-
notes the time of the configuration (i.e. load step)
in which the quantity occurs and that a left subscript
denotes the time of the configuration (i.e. load step)
in which the quantity is measured.

In this description, the linearised equilibrium
equation, resulting from the principle ofvirtual dis-
placements expressed in the last equilibrium con-
figuration may be written as

where '*o'91 is the total virtual work due to the
external forces; toli àre the Cartesian components
of the Cauchy stréss tensor; f ii aîd 1r1; are the
Cartesian components of the linear and nonlinear
strain increments, respectively, and the 1C,7," arê
the components of the tangent constitutive tensor
relating small strain increments to the correspond-
ing stress increments; ô represents a small virtual
variation of the related variable. Using the displace-
ment-type approach of the FEM, the continuum
mechanics formulation (6) is transcribed into the
following set of equilibrium equations for a single
element in global Cartesian axes:

[oRlr ['R]r['K,_l I'R] torRl iq]

+ [orR]t ['F]'['K*r] t'nl tonl{s}
: {,*o,À} _ [oÀ], [,R]r {,F}. (7)

With {q} the vector of incremental nodal displace-
ments between the two equilibrium configurations
t and t + L t, l' K Ll is the material incremental stiff-
ness matrix and ['KNr-] is the geometric incremental
stiffness matrix; {'*o'R} is the vector of nodal
forces equivalent to applied external loads, and {'F}
the vector of nodal forces equivalent to internal
stresses.

Neglecting the influence of shear, the incremen-
tal stress-strain tensor resumes, in two-dimen-
sional beams, to a simple uniaxial incremental tan-

gent modulus, and we get

,K'l :

'Ki(,- : (e)

(10),F, : 
T,,'O, 

N},r dY,

where N{ r stands for dNj/d-x. [oR] and ['R] are the
transformation matrices between the initial config-
uration and global coordinates axes and between
the current and original configurations, respec-
tively.

The formulation adopted herein is a general dis-
placement-type approach with the usual beam as-
sumptions. Since the additional d.o.f . q7, es, esmaÿ
be eliminated by static condensation in eqn (7), it
is now quite clear that the only purpose of intro-
ducing these kinematic dummy parameters is to
evaluate with a reasonable accuracy the stiffness
matrices (8), (9) and the load vector (10) by taking
into account some physical insights regarding the
spread of plasticity across the sections and along
the element.

A semi-inverse hybrid type formulation has been
adopted by Backlund[7], who first assumes the dis-
tribution of bending moment and normal force along
the element, then evaluates the (material) flexibility
matrix and takes it inverse to obtain the elementary
stiffness matrix. The hypothesis there lies in the
choice of the order of the bending moment and nor-
mal force fields.

4. ELASTIC STIFFNESS MATRIX

The stiffness ['KNr-] (9) and the load vector {'F}
(10) will always be evaluated numerically; on the
other hand, computer time saving could be

achieved in material linear analysis when using the
analytical form of the material stiffness matrix

['Kt] (8) (for a prismatic beam element). Let Kn,
Kr and K2 be, respectively, the zero-, first- and sec-

ond-order moments of the elastic weights E dO:

{,'' *}.' N}.1dv'

L'o. *?'' N|'t dv 
'

[, ,C,r," P,., 67eii dV + ï,'o; ô,1; dY

- t+^tgi - [,,'o,t 
6,eii dV, (6)

r. = / roo,

*, : I,Ey do,

*, = [nly2 da.

Then, differentiating the shape functions (5) with
respect to x according to the needs of (8) and in-

(l l)
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tegrating analytically, we obtain

2Kt 4 Kr 2Kt-1[oqr*i**r'-iVrqu,
prLa/ Ko \ {2+45 q\-q6,ea=@\(.d-l - s "'
o,L2 I /(rll I 2 4Kt

sr:';K0 - t6' (K.i, _ Kh- 
pv - lst 

+ 
1s4 - iî;Is2

2Kt 4 Kr 2Kt
-rKnq'-iKnLqt-tKoq'

I l7 r(r
toD

The right side vector ofthe system (12) contains the
elementary nodal forces equivalent to constant dis-
tributed transversal and tangential loads acting
upon the element at the level s from the local x-
axis. From the last three equations of (12), we can
have the values ofq7, qs, qe as functions ofthe other
unknowns, the load, the geometry and the elastic
properties of the element.

p,L2 I KtL3 2 I 4Kr

" 
= gxn - t6, (K.(, - Kil- 

p\ + lst + 
1s4 - 1 KoL<tz

stiffness matrix of the beam element found in any
structural textbook. System (14) shows the exact
additional terms required by the analysis when the
local x-axis no longer coincides with the centroid
of the section (i.e. Kr * 0). This circumstance is
often met in practice-for instance, to represent
beam-to-column or beam-to-beam connections or
when studying composite girders and beams with-
out computing a priori the position of the centroid
of the section.

5. COMPUTER PROGRAM ORGANISATION

Assembly of the elementary equations (7) into a
global set of equilibrium equations for the whole
structure requires the step-by-step solution of a

nonlinear system of equations. A purely tangential
Newton-Raphson algorithm is used for the exam-
ples presented in this paper:

[oR]r[r+4,Â(É-,)]r[,+a/Kfll-r) + r+Â/Kff- r)]

x [,+Â/Â-(k- 
r)]toÂl{A 0(*)} : {,*o,rR}

_ [oR]T[r+ 
4,4-tt- tllrf + arF(k-,)], (15.1)

l0l r(r 13 r(s 2'7 fi ll Kr- nT - 4oT toE nT
94 Kz 27 Kt 196 Kz 34 Kz

7i7 nE TD - iD
36K2 llKr 34K2 6Kz
iT nT îE -,7

37 Kt ll7 K1 l0l r(r
ro7 iD - nT

316 Kz 94 Kz

5F 1E

316 KzTî
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189 r(o '72 h 27 Kt-40L li] nT

27 Kn 72 Kr

NT _1D

l7l h 512 Kt
to7 - sî

54 Rr 216 Kt
7 L -Tî

L
Pr8

261 K 512 Kt l7l Kt
toD -:D -i7

l5l r(r 128 Kt 63 Kt
NT 'Tî -nT

_ 189 Ko

40L

261 Kr- r'i7

1024 Kz 216 Kr

5D 7D
54 Ko

5L

7

Âp,L + spj

7

6ntL - sn' . (12)

pyL'
60

L
er8

P 
'-L1
60

16 Kz 63 h 128 Kt 153.l(r

1T - zoT T7 nT
_ 297 Kt

40L

Eliminating (13) with the first six equations of (12)

leads to the reduced 6 x 6 system of equilibrium
equations

(13.1)

(13.2)

(13.3)

0

12 KoKz - K1'D 
K,

6 KoKz - K1'D 
K"

0

'12 KoKz - Kl
TK,

6 KoKz - Kl
tK,

_ r(r
L

6 KoKz - Kl-D K,

1 4KoKz - 3K1

LKo

3
- ».L
8',

l6
- n,L
30'

3

s 
P'L

/K'\L
a,(s-*/ +rr;

L2 LKr
Pti- exa 

Ko

L2 LKr
- Pti- Pxi 

Ko

Kaj0
I.

_Kr
L

Kt
L

_ r(o

L

0

Kt
L

rKo

L

L
P:1

12 KoKz - K1 6 KoKz - Kl
DKrlK,

I 4KoKz - 3K1

LKo

Lpxl

/Kt \ I
"\K,-')*P'1

To the best of our knowledge and despite its great
practical importance, the stiffness matrix (14) has
never been published. Assuming Ks : EQ, I<, :
0, Kz : 81, system (14) is strictly identical to the

t+^tQG) - t+^tQ(k-l) + LQ(o),

t+LteQ) - te.

Iterations are performed until the nodal

(ts.2)

(r5.3)

forces
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equivalent to external loads are equilibrated by
nodal forces equivalent to internal stresses.

In the first-order analysis, the geometric stiff-
ness matrix disappears in (15), and the ['*o'R]
transformation matrix vanishes into a unity matrix.

It must be pointed out that in a nonlinear anal-
ysis, static condensation of the 9 x 9 stiffness ma-
trix into a reduced 6 x 6 is probably not economical
since the costs saved in the memory by the reduced
size of the system is offset by the enormous number
of input/output operations on disks where elimi-
nated equations like (13) have to be stored.

Newton-Cotes quadrature has been used to nu-
merically evaluate the stiffness matrices and load
vectors. It has been found that a four-points for-
mula gives accurate results for integration along the
x-axis. In material nonlinear analysis, a greater
number of points is necessary to compute the sec-
tional quantities K6, Kr, Kz and the normal force
and bending moment (generally two or three layers,
depending on the geometry of the section, and
seven points on each layer).

Various stress-strain relationships-linear, bi-
linear, trilinear-for cold worked steel and for con-
crete have been incorporated and tested into the
computer program. This program may be run either
in nonlinear elastic analysis from a material point
of view or in hypoelastic analysis (full plasticity
with stresses depending on the history of the load-
ing process).

In the following examples, original units have
been kept for the clarity of comparison.

6. EXAMPLES

6.1 Clamped arch under normal pressure

The first tests of the computer program were
made on problems where the nonlinearity is only
geometric and for which theoretical solutions are
known. For a circular clamped arch under increas-

ing normal pressure like the one in Fig. 2, we have
a solution given by Schreyer and Masur[8]. It is well
known that, according to the shallowness and flex-
ural rigidity of the arch, this type of structure may
buckle (symmetrically or not) or not buckle. For
the problem presented here, the behavior of the
arch does not exhibit the "snap-through" phenom-
enon. The load-deflection (at midspan) curve is
given in Fig. 2. Five straight elements were used to
represent half of the arch.

6.2 Cantilever beam under uniformly disîrîbuted vertical
load

In the first example, displacements were large
but could still be termed as moderate with respect
to the depth ofthe section. In this second example
(Fig. 3)-an elastica problem-displacemênts and
rotations are large regarding not only the span but
also the depth. A first, semitheoretical, solution of
this problem was given by Rohde[9]. A better the-
oretical one was produced later by Holden[l0]
against which our values are compared. Numerical
analysis of this problem has been given by several
authors, among them Bathe[s] and Yang[l1]. Five
elements were used to represent the whole struc-
ture.

6.3 Simply supported beam in elaslo-plastic flexure
The third example deals with a problem in which

nonlinearity is only produced by the behavior ofthe
material.

The simply supported beam in Fig. 4 has a rec-
tangular cross section, and its material is elastic-
perfectly plastic. The load is a uniformly distributed
vertical load. According to the shape factor of the
rectangular section (1.5), a nonlinear behavior is ex-
pected in the last third of the loading range before
reaching the perfectly plastic failure load. The the-
oretical solution of this well-known problem was
given by Prager and Hodge[2]. Five elements of
unequal length were used to represent half of the

computed

theoreticat

R.too" E=107 psr

L=24.25' b=1"
H=3t h=2.2'

P='l4"ol

23t,

,2L

Fig. 2. Clamped arch under normal pressure.

ô trnl
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stnrcture, and each element was three-layered. The
load was applied in one shot up to the onset of yield-
ing and then added in small increments up to failure.
Figure 4 gives the load-deflection curve of the mid-

span section.
In these three fîrst examples it should be noted

that the load was uniformly distributed in local or
global axes. The nine-d.o.f. beam element with its

high-order shape functions chosen (among other
reasons) for such cases has shown excellent agree-

ment with the theoretical solutions. The last three

examples are comparisons between experimental
and computed values since, after all, physical ev-

idence is the only matching test for a mathematical
model.

6.4 Fixed-based, pitched-roof portal frame
The frame represented in Fig. 5 is the three-times

statically indeterminate frame FB-1 tested by
Horne and Chin[13]. The frame was of uniform sec-

tion throughout and fabricated from 5t' >< l'l x 9 lb
RSJ in high yield stress steel 85968. The charac-
teristics of the test are precisely known, especially

the true stress-strain relationship. Vertical deflec-

tion of the apex is given as a function of the total
external load in Fig. 5. Two types of analysis were

run: a first-order displacement analysis assuming an

elastic-perfectly plastic material behavior and a

Iarge displacement-type analysis with a trilinear
stress-strain relationship. It can be seen in Fig. 5

that the experimental failure load lies between"the
failure loads predicted by the two different analy-

SCS.

The same trend has been observed by us with
nearly all the frames tested in the fifties and sixties,
whose results may be found in the literature, when

simple limit design received its experimental vali-
dation. Ifthe results ofthe computer program prove
right, this means firstly, that the actual bending mo-

ment developed in the plastic hinges could be

greater than the fully plastic moment (horizontal

line on Fig. 5 indicates when strain hardening be-

gins) and secondly that this beneficial resistance is

superseded by the second-order effects which pro-

duce a global stability failure. This not well-known
interpretation has already been suggested by some

experimentalists.

6.5 Continuous reinforced concrete beam

The last two examples are reinforced concrete

structures. The stress-strain relationship of con-

crete has first to be defined (Fig. 6). A very inter-
esting law has been proposed by Quast[l4, 15]. The

unique feature of this law (slightly modified by us)

is the tension part of the relationship where the ac-

tual tensile strength of concrete is related to the

tension steel strain. This fictitious stress-strain
curve is used to represent the so-called tension stiff-
ening effect and has proved extremely acÇurate

when compared with experimental values of mo-

ment-curvature relationships of reinforced and pre-

stressed concrete sectionsll4]. The compression
part of this law is somewhat more conventional and

the material failure occurs when the compressive

concrete strain becomes greater than a prescribed

value or when the tension steel is exhausted.
The reinforced concrete three-span continuous

beam represented in Fig. 7 is the CP-l beam tested

by Macchi[16]. In Fig. 7, the outer support reac-

tions values are plotted against the midspan load'

The following material properties were used:

for steel (trilinear, strain hardening):

f ,i 4940 kgflcm2,
€pi 1.65% (when strain hardening begins),
Eti 2,000,000 kgf/cm2,
Efi 10,000 kgf/cm2,
Eu|. 50,000 kgf/cm2;

for concrete:
f ,i 400 kgf/cm2,
€,i 2.2 x l0 3

Eoi 350,000 kgf/cm2,
€ctt 0 and 80 x 10-6,
m :2.

The negative values of the reactions are caused by
the stresses produced by the dead weight of the

beam (which are not negligible). This test is an his-

torically important one. It was especially designed

to show that redistribution of bending moments in
reinforced concrete occurs already in the cracked

stage (importance of tension stiffening) and that
simple limit analysis without check of compatibility
conditions is inadequate in the analysis of statically
indeterminate reinforced concrete structures since,

in the present case, material failure occurs in the

midspan section before the full development of the

plastic moment in the support sections. Both as-

pects were found in our analysis (predicted con-

crete and steel strains in the central section for the

837

oErn
Oct uct

wirh o11 
= 
r., 1!r:* 1'

bY - tsct

Es= lension steeI strain

gy=yield steel strain

1<m<2

O , rr € rn
{c- ec

0<n<o

n =1 : etastic-plastic

n =2 ,CEB parobola-rectanglê

n= æ : rigid-ptastic

lor Ec <Ë<0

Fig. 6. Stress-strain relationship for concrete.



838 B. Espror.i

Fig. 7. Continuous reinforced concrete beam.

Fig. 8. Unbraced reinforced concrete frame.

experimental failure load are indicated in Fig. 7).
The dashed line in Fig. 7 represents a computed
solution given by Cauvin[7].

6.6 Unbraced reinforced concrete frame
Example 6.5 did not require a second-order anal-

ysis. In this sixth and last example, a combined geo-
metrical and material nonlinear analysis is per-
formed. In Fig. 8, the computational results of the
column load-horizontal deflection curve are plot-
ted together with the experimental values of the
reinforced concrete frame L3 tested by Fergusson
and Breen[8]. Sixteen elements of equal length
were used to represent the whole structure. Ma-
terial properties were

for steel (elasto-plastic): for concrete:
#3 f, : 56,400 psi, f" : 3200 psi,
#4 ô : 58,500psi, E :3259 x 103

psl'
e":2 x l0-3,

€", : 0.

A particular aspect of this test is the important
amount of axial load acting on the columns, which
inevitably produces a stability failure. This was per-
fectly found in our computer analysis. Another
computed solution given by Gunnin et al.ll9), using
a generalised Ramberg-Osgood-type formulation
to describe the moment-curvaturé relationship of
a reinforced concrete beam element, is also plotted.

The somewhat less satisfactory solutions ob-
tained by Cauvin in Example 6.5 and by Gunnin er
a/. in Example 6.6 may be attributed to the use of
a simpler element and general approach than those
presented in this paper.

7. CONCLUSION

The nine-d.o.f. beam element, when used in lin-
ear and nonlinear problems, has shown excellent
agreement with theoretical and experimental solu-
tions. It is generally difficult to compare the pre-
cision and the efficiency of an element with an-
other, since frequently the authors do not give some

E : 29.3 x 106 psi,



important characteristics of their analysis, i.e. num-
ber of elements, number of integration points. On
the other hand, computer effectiveness is highly de-
pendent on solution strategy (algorithm) and pro-
gram management. This is why we would not say

that simpler elements or formulations for combined
nonlinear analyses could not produce good results
too.

But the fine accuracy properties of this element
and the general formulation adopted in this paper

allow us to now take easily into account other kinds
of nonlinear behavior, and, for instance, the de-

velopment of a time-dependent model for rein-
forced concrete is currently in progress.
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