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Abstract Population differentiation in female mating sig-
nals and associated male preferences can drive reproductive
isolation among segregated populations. We tested this
assumption by investigating intraspecific variation in
female sex pheromone and associated male odour prefer-
ences among distant populations in the solitary bee Colletes
cunicularius (L.) by using quantitative gas chromatography
and by performing field bioassays with synthetic blends of
key sex pheromone compounds. We found significant
differences in sex pheromone blends among the bee
populations, and the divergence in odour blends correlated
positively with geographic distance, suggesting that genetic
divergence among distant populations can affect sex
pheromone chemistry. Our behavioural experiments, how-
ever, demonstrate that synthetic copies of allopatric female
sex pheromones were cross-attractive to patrolling males
from distant populations, making reproductive isolation by
non-recognition of mating signals among populations
unlikely. Our data also show that patrolling male bees from
different populations preferred odour types from allopatric
populations at the two sites of bioassays. These male
preferences are not expected to select for changes in the
female sex pheromone, but may influence the evolution of

floral odour in sexually deceptive orchids of the genus
Ophrys that are pollinated by C. cunicularius males.
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Introduction

Divergence in courtship signals has often been referred to
as a prominent force promoting reproductive isolation
among evolutionary lineages, which may ultimately lead
to speciation (West-Eberhard 1983; Andersson 1994;
Panhuis et al. 2001). The major mechanisms commonly
raised for driving allopatric divergence in mating cues are
(1) stochastic processes (Fisher 1930; Lande 1981) and (2)
adaptation to local environments (see Boughman 2002 for a
review). These evolutionary forces are not mutually
exclusive and might even act in concert, thereby promoting
adaptive population divergence over time (Schluter 2000).
In spite of many reports on the nature of courtship signals
across the animal kingdom, the extent to which population
differentiation in mating cues affects species recognition
has received little empirical support and remains a key issue
in evolutionary biology (Andersson 1994).

Most solitary bee species display patchy distribution
patterns throughout their range as an outcome of the spatial
heterogeneity of their nesting sites and foraging resources
(O’Toole 1994; Tscharntke and Brandl 2004)—which may
include only particular floral rewards (oligolectism; Eickwort
and Ginsberg 1980; Simpson and Neff 1981)—and an
overall restricted ability to forage over great distances (see
e.g. Gathmann and Tscharntke 2002). These constraints may
restrict continuous gene flow among distant populations and
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thus lead to evolutionary divergence, especially under
spatially varying selection regimes (Jordan 1905; Wright
1943; Antonovics 1971; Hedrick et al. 1976).

As in many insects, mate recognition in solitary bees is
mediated by chemical cues, so-called sex pheromones
(reviewed by Ayasse et al. 2001), although other mating
cues can also be involved (e.g. Larsen et al. 1986; Candolin
2003). One of the few solitary bees for which sex
pheromone data are available is Colletes cunicularius (L.),
which can be found in early spring throughout the Euro-
Siberian region (Noskiewicz 1936) when few other solitary
bee species are active (Michener 1974; Larsson and Tengö
1989; Mader 1999). The chemical basis to mate location
and recognition by patrolling C. cunicularius males has
recently been unravelled by Mant et al. (2005a), after
earlier studies by Bergström and Tengö (1978), Cane and
Tengö (1981) and Borg-Karlson et al. (2003). The species-
specific mate attraction mechanism in C. cunicularius
females has been shown to include, as an early step in the
males’ sexual stimulation and inspection flights, emission
of the long-range (>1 m) attractant linalool (3,7-dimethyl-
1,6-octadien-3-ol; Borg-Karlson et al. 2003), a highly
volatile and ubiquitous monoterpene alcohol (Knudsen et
al. 1993; Raguso and Pichersky 1999; Knudsen and
Gershenzon 2006). Subsequent short-range (<10 cm) mate
attraction and copulation attempts are triggered by cuticular
hydrocarbons (CHCs) located on the female body surface.
A functional dissection of behaviourally active compounds
identified by gas chromatography with electroantenno-
graphic detection, in addition to behavioural bioassays,
has pinpointed a set of three (Z)-7 alkenes of 21, 23 and 25
carbons chain length as key compounds of the female sex
pheromone in this bee species (Mant et al. 2005a).

To date, population variation (i.e. dialects) in female sex
pheromone signals and associated preferences have only been
reported from moths (see e.g. Klun et al. 1975; Miller and
Roelofs 1980; Löfstedt et al. 1986; Hansson et al. 1990; Toth
et al. 1992; Kawazu et al. 2000; McElfresh and Millar 2001)
and from Drosophila flies (see e.g. Jallon and David 1987;
Markow 1991; Stennett and Etges 1997; Etges and Ahrens
2001). In most cases, geographic isolation of populations
along with genetic drift have been shown to foster the
evolution of population-specific signals, usually consisting
of quantitative “variation on a theme” (i.e. identical key sex
pheromone compounds in different relative amounts;
Löfstedt et al. 1986; Hansson et al. 1990; Toth et al. 1992;
Löfstedt 1993). Field tests performed with synthetic blends
of female sex pheromone compounds have demonstrated
population differentiation in compound detection and odour
preferences in male moths (see Hansson et al. 1990 and
references therein; Toth et al. 1992). Although the topic of
sex pheromone differentiation and its potential role in
reproductive isolation and allopatric speciation is one of
high interest in evolutionary ecology, very few studies have
addressed this issue in hymenopterans, especially in solitary
bees (reviewed by Ayasse et al. 2001).

In this study, we investigated differences in female mating
signals in C. cunicularius by performing comparative
chemical analyses of the female sex pheromone from five
populations from Austria, France, Italy and Switzerland
(Fig. 1). Additionally, we tested the hypothesis of popula-
tion-specific odour preferences of C. cunicularius males by
performing bioassays with synthetic imitations of popula-
tion-specific blends of key compounds for mate attraction in
two natural populations in Austria and Switzerland. Specif-
ically, we ask the following questions: (1) Does the sex

Fig. 1 Sampling localities of C.
cunicularius and Ophrys exal-
tata. The bees were sampled at
Ondres-plage (F), Neuhausen
(CH), Fussach (A), Vienna (A)
and Monte Gargano (It). The
sites of bioassays are underlined
in black
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pheromone signal of C. cunicularius females vary among
distant populations? (2) Do C. cunicularius males have
population-specific odour preferences?

Materials and methods

Sample collection

Virgin C. cunicularius females were collected in early
spring in geographically distant populations at Fussach (A;
n=33), Vienna (A; n=12), Neuhausen (CH; n=56),
Ondres-plage (F; n=20) and Monte Gargano (It; n=16;
Fig. 1). Virgin females are easily detected after emergence
when a cluster of sexually aroused males forms around
them. All attractive C. cunicularius females were caught
with a hand net, stored individually in chilled plastic cups
(Eppendorfs) and instantaneously killed by freezing. Epi-
cuticular waxes of the bees were sampled by extracting the
body of individual female bees in 400 μl hexane (high
performance liquid chromatography grade) for 1 min. All
extracts were stored at −20°C. Before GC analyses, 100 ng
n-octadecane was added as internal standard to all samples.

Chemical analyses

All samples were analyzed by gas chromatography (GC) on a
Hewlett Packard 6890N GC equipped with a HP-5 capillary
column (30 m×0.32 mm×0.25 μm). The injector temperature
was kept at 300°C. One microlitre aliquots of the extracts was
injected splitless at 50°C (1 min) followed by a programmed
increase of oven temperature to 300°C at a rate of 10°C/min;
helium was used as the carrier gas. Compounds were
identified by comparison of retention times with authentic
standard compounds. Additionally, selected samples were
analyzed with a GC with a mass selective detector (MSD—
Hewlett Packard G1800 A), and MS spectra compared with
those of known reference substances (Mant et al. 2005a). The
absolute amounts of the 40 identified compounds were

calculated by the internal standard method as described by
Mant et al. (2005a). Relative proportions (%) were calculated
by summing up the absolute amounts of all compounds;
absolute amounts of individual compounds were then
divided by the sum and multiplied by 100.

Preparation of synthetic blends

The mean relative and absolute amounts of all compounds
found in epicuticular extracts of C. cunicularius females
(Table 1) were used to prepare three synthetic blends
designed to mimic relative proportions of key sex phero-
mone compounds found in natural extracts of virgin C.
cunicularius females from Fussach (A), Monte Gargano (It)
and Neuhausen (CH; Table 2). Not all behaviourally active
compounds (see Mant et al. 2005a) could be used to
prepare the synthetic blends, as only 12 active compounds
[including the major compounds for mate attraction
described by Mant et al. (2005a)] were available to us in
synthetic form. GC runs of the synthetic blends (synthetic
compounds mixed with hexane) were made before bio-
assays to check the relative amounts of compounds in the
blends. Each synthetic mixture tested contained equal
absolute amounts of active compounds in different ratios
(Table 3). This method allowed focusing on ascertaining the
impact of individual hydrocarbon profiles (and not absolute
amounts of compounds) on the short-range attractiveness of
the blends towards mate-searching males.

Behavioural experiments

Bioassays were performed in late March and early April in
natural populations at Fussach (A) and Neuhausen (CH;
Fig. 1) where thousands of C. cunicularius males were
patrolling for emerging females on restricted nesting/
emergence sites. The density of bees in each site was
stable over the days of observations, although higher at
Neuhausen (CH) than at Fussach (A). Behavioural
responses of male bees towards dummies (black cylindrical

Table 1 Mean absolute amounts (μg) of compounds recorded in natural extracts of individual virgin C. cunicularius females

Natural extractsa (Mean absolute amounts in micrograms ± SE)

Fussach (A) Vienna (A) Neuhausen (CH) Ondres-plage (F) Monte Gargano (It) χ2—F valuesb

All compounds 3.776±1.697 (a) 3.854±3.031 (a) 8.542±3.477 (b) 2.604±0.816 (c) 10.724±3.563 (d) 18.888*
Active compounds 3.130±1.628 (a) 2.987±3.053 (a) 7.728±3.134 (b) 1.201±0.390 (c) 9.881±3.290 (d) 92.006**
Non-active compounds 0.645±0.283 (a) 0.867±0.421 (a) 0.813±0.429 (a) 1.402±0.427 (b) 0.842±0.307 (a) 6.342**

Different letters inside the parentheses indicate significant differences.
a Pairwise comparisons among groups for each class of compounds (same line) using (1) non-parametric Mann–Whitney U-test (with Bonferroni
correction for all compounds and active compounds, α=0.005) or (2) ANOVA post-hoc LSD test [for non-active compounds, α=0.005 (df=4)]

b Overall comparisons for each class of compounds (same line) using (1) non-parametric Kruskal–Wallis test (for all compounds and active
compounds, α=0.05 (df=5; *P<0.05, **P<0.01) or (2) ANOVA (for non-active compounds, α=0.005 (df=4; *P<0.005, **P<0.001)
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Table 2 Mean relative amounts (%) of compounds recorded in cuticle extracts of individual virgin C. cunicularius females

Active compounds Natural extractsa (Mean relative amounts in % ± SE)

Fussach (A) Vienna (A) Neuhausen (CH) Ondres-plage (F) Monte Gargano (It) χ2 Values b

Alcohols
1. Linalool 3.721±0.638 (a,d) 4.560±0.744 (a) 1.318±0.198 (b,c) 1.369±0.236 (c,e) 2.801±0.882 (d,e) 29.859 **
Aldehydes and esters
2. Hexadecanal (and isopropyle) 0.350±0.039 (a) 0.241±0.039 (a) 0.532±0.033 (b) 0.019±0.015 (c) 0.128±0.019 (d) 83.704 **
3. Eicosanal 0.891±0.076 (a) 0.847±0.105 (a,b) 1.070±0.042 (b) 0.425±0.037 (c,d) 0.485±0.059 (d) 30.404 **
4. Tetracosanal 0.168±0.055 (a,d) 0.441±0.135 (b) 0.106±0.014 (a) 0.000±0.000 (c) 0.064±0.015 (d) 60.949 **
5. Dodecyltetradecanoate
(and decylhexadecanoate)

0.297±0.061 (a,c) 0.468±0.222 (a) 0.314±0.024 (a) 0.012±0.008 (b) 0.300±0.089 (c) 47.281 **

Unsaturated hydrocarbons
6. (Z)-7-Heneicosene 2.761±0.335 (a) 1.533±0.751 (b) 6.069±0.325 (c) 14.481±1.902 (d) 5.828±1.215 (c,e) 62.468 **
7. (Z)-7-Tricosene 1.673±0.286 (a) 1.113±0.576 (a,b) 0.822±0.096 (b) 7.803±1.681 (c) 5.202±1.349 (c) 45.628 **
8. (Z)-7-Pentacosene 2.091±0.235 (a) 2.310±1.143 (b) 1.911±0.176 (a) 2.390±1.048 (a,b) 16.291±2.051 (c) 32.566 **
9. (Z)-9-Tricosene 1.878±0.612 (a) 1.054±0.564 (a) 2.385±0.336 (b) 6.754±1.759 (a,b) 1.128±0.445 (a) 25.054 **
10. (Z)-9-Tetracosene 0.311±0.063 (a,b) 0.494±0.253 (a,b) 0.305±0.026 (a) 0.956±0.383 (a,b) 0.379±0.046 (b) 8.210 *
11. (Z)-9-Pentacosene 7.425±1.069 (a) 1.984±0.527 (b) 8.966±0.684 (a) 3.702±1.022 (b) 9.693±1.309 (a) 34.990 **
12. (Z)-9-Heptacosene 4.006±0.390 (a) 2.938±0.647 (a) 6.679±0.523 (b) 1.020±0.181 (c) 3.785±1.079 (a) 56.575 **
13. (Z)-9-Nonacosene 5.323±0.455 (a) 4.837±0.929 (a) 4.602±0.317 (a) 0.533±0.087 (b) 0.720±0.117c (b) 39.545 **
14. Z-9-Hentriacontene 2.323±0.299 (a) 2.219±0.483 (a,b) 1.440±0.221 (b) 0.373±0.060 (c) 0.831±0.247 (c) 76.038 **
15. (Z)-8,(Z)-20-Nonacosadiene 0.597±0.105 (a,c) 0.341±0.106 (a,e) 0.636±0.052 (c) 0.000±0.000 (d) 0.312±0.082 (e) 58.964 **
16. (Z)-8,(Z)-20-Hentriacontadiene 2.419±0.310 (a) 2.553±0.668 (a) 2.456±0.176 (a) 0.173±0.078 (b) 0.887±0.302 (c) 60.840 **
17. (Z)-11-Nonacosene 1.010±0.334 (a) 1.523±0.445 (b) 1.347±0.389 (a) 0.000±0.000 (c) 1.478±0.398 (b) 60.111 **
Saturated hydrocarbons
18. Heneicosane 6.142±0.712 (a) 3.911±0.747 (b) 6.142±0.312 (a) 17.740±1.868 (c) 6.668±0.916 (a) 38.957 **
19. Tricosane 18.257±0.992 (a) 11.755±1.188 (b) 24.871±0.746 (c) 21.621±0.951 (d) 20.113±1.447 (a,d) 49.764 **
20. Pentacosane 8.677±0.421 (a) 8.891±0.930 (a) 11.279±0.450 (b) 8.490±0.555 (a) 10.053±0.935 (a) 25.649 **
21. Heptacosane 5.869±0.326 (a) 7.582±1.096 (a) 6.650±0.344 (a) 4.177±0.285 (b) 3.660±0.347 (b) 40.408 **
Unknown compound
22. A14 0.035±0.019 (a) 0.106±0.048

(a,b; c,d)
0.034±0.008 (b) 0.000±0.000 (c) 0.065±0.011 (d) 45.278 **

Non-active compounds
23. Dodecosane 0.435±0.027 (a) 0.306±0.032 (b) 0.478±0.014 (a,d) 0.635±0.024 (c) 0.687±0.177 (d) 43.076 **
24. Tetracosane 0.34 ±0.024 (a) 0.339±0.042 (a,b) 0.358±0.011 (b) 0.348±0.022 (a,b) 0.476±0.033 (c) 17.507 *
25. Hexacosane 1.162±0.450 (a,c) 9.498±1.161 (b) 0.274±0.014 (a) 0.202±0.022 (c) 0.217±0.017 (c) 38.820 **
26. Octacosane 0.186±0.034 (a) 0.198±0.060 (a,b) 0.178±0.018 (a) 0.079±0.027 (b) 0.178±0.049 (a) 10.915 *
27. Nonacosane 3.128±0.208 (a) 0.888±0.375 (b) 2.754±0.189 (a) 1.716±0.158 (c) 1.672±0.208 (c) 46.248 **
28. (Z)-3-Tricosene 0.479±0.062 (a) 0.397±0.080 (a) 0.373±0.027 (a) 0.824±0.066 (b) 0.392±0.064 (a) 29.574 **
29. (Z)-5-Tricosene 0.426±0.075 (a,d) 0.214±0.053 (a,b) 0.211±0.015 (b) 0.102±0.087 (c) 0.399±0.058 (d) 41.633 **
30. (Z)-5-Pentacosene 0.966±0.096 (a) 0.679±0.138 (a,b) 0.749±0.218 (b) 0.333±0.056 (c) 0.078±0.078 (d) 52.890 **
31. (Z)-7-Heptacosene 1.921±0.297 (a,c) 1.296±0.252 (a) 1.490±0.152 (a) 0.649±0.158 (b) 2.366±0.339 (c) 27.042 **
32. (Z)-7-Nonacosene 1.461±0.184 (a) 3.103±0.537 (b) 0.861±0.090 (c) 0.377±0.067 (d) 0.173±0.037 (e) 73.489 **
33. C—Unknown 0.016±0.011 (a) 0.050±0.025 (a) 0.053±0.010 (b) 0.000±0.000 (a) 0.117±0.027 (c) 82.367 **
34. D—Unknown 0.479±0.028 (a) 0.448±0.059 (a,c) 0.466±0.041 (a,c) 0.793±0.080 (b) 0.395±0.020 (c) 27.822 **
35. E—Unknown 0.210±0.020 (a) 0.563±0.317 (a,b) 0.237±0.018 (a) 0.441±0.047 (b) 0.277±0.051 (a) 25.848 **
36. F—Unknown 0.862±0.329 (a) 1.389±0.369 (b) 0.157±0.015 (a) 0.000±0.000 (c) 0.218±0.051 (a) 57.105 **
37. M—Unknown 3.001±0.452 (a) 1.237±0.354 (a) 0.143±0.011 (b,d) 0.514±0.070 (c) 0.224±0.054 (d) 45.870 **
38. S—Unknown 0.341±0.042 (a,c) 1.597±1.170 (a) 0.171±0.008 (b,c) 0.403±0.066 (a) 0.195±0.022 (c) 34.047 **
39. Y—Unknown 0.367±0.048 (a) 0.132±0.065 (b) 0.394±0.023 (a) 0.000±0.000 (b) 0.293±0.042 (a) 64.485 **
40. Z—Unknown 0.334±0.051 (a) 0.463±0.201 (a,b) 0.248±0.021 (a) 0.543±0.068 (b,c) 0.772±0.103 (c) 36.825 **

Different letters inside the parentheses indicate significant differences.
a Pairwise comparisons among groups for each compound (same line) using non-parametric Mann–Whitney U-test, α=0.005
b Overall comparisons for each compound (same line) using non-parametric Kruskal–Wallis test, α=0.05 (df=4; *P<0.05, **P<0.01)
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plastic beads, 4×5 mm, mounted on an insect pin) scented
with synthetic blends were taped using a voice recorder
during 3 min and classified into two categories: (1) number
of approaches [hovering in front of the dummy at close
range (<10 cm) without any contact with the odour source]
and (2) number of contacts (from a short pounce to a
copulation attempt with the scented dummy). Odour
sources were presented individually for each test (i.e. each
scented dummy was used only once). A female-equivalent
amount of 2.5 μg of each synthetic blend was applied on
each dummy with a Hamilton glass syringe (100 μl; see
blend composition in Table 3). The dummy was then placed
in a male patrolling area after the solvent had evaporated.
Controls (dummies treated with solvent only and placed in
a male patrolling area after the solvent had evaporated)
were tested independently for their attractiveness after
every 5th test. All bioassays were conducted between
10 A.M. and 3 P.M.—when C. cunicularius males’ patrolling
activity was at peak. As males of C. cunicularius have been
shown to patrol fairly localized regions on the nesting/
emergence site (Peakall and Schiestl 2004), test spots were
changed after each bioassay in both populations to test the
responses of different males to synthetic odour blends.

Statistical analyses

Means and standard errors (SE) of absolute (μg/ml) and
relative amounts (%) of all identified compounds were
calculated for all natural extracts. When transforming data
did not yield normal distributions and variances were not
homogeneous, we used a non-parametric Kruskal–Wallis

(K-W) test for multiple independent comparisons of absolute
and relative amounts of compounds among bee populations.
Mann–Whitney (M-W) U-tests were performed for a
posteriori pairwise comparisons of (1) the total amounts
of compounds and (2) relative amounts of each compound
among populations. A standard Bonferroni correction was
used for pairwise comparisons among bee populations; the
level of significance (α) was set to 0.005 (α=0.05 divided
by the number of comparisons, i.e. α=0.005).

Multivariate analyses of population variation in cuticular
hydrocarbons (relative amounts, in %) of C. cunicularius
females were performed by canonical discriminant function
(CDF) analysis, as the data did not contain significant
outliers and given that this multivariate method is robust
even when the homogeneity of variances assumption is not
met (Brosius 2002). CDF analysis was performed with all
behaviourally active compounds. To test for differences in
male bee responses to synthetic blends, a one-way analysis
of variance (ANOVA; with LSD post-hoc test) was used.
All these statistical tests were performed with the SPSS
11.5 package (Brosius 2002).

The spatial structuring of the female sex pheromone in
C. cunicularius was investigated by performing a Mantel
(1967) test, as implemented in GenAlEx 6 (Peakall and
Smouse 2005a,b) based on individual-by-individual Eu-
clidean distances in relative amounts of chemical com-
pounds vs geographical distance among populations.
Random permutations (n=99) were used to test for
significant correlation between divergence in odour com-
pound profiles (active compounds) and geographical
distance among sample populations.

Table 3 Mean relative amounts (%) of behaviourally active compounds in cuticle extracts of individual virgin C. cunicularius females vs
synthetic blends used for the bioassays

Active compounds Fussach (A) Monte Gargano (It) Neuhausen (CH)

Natural extract Synthetic blend Natural extract Synthetic blend Natural extract Synthetic blend

1. (Z)-7-Heneicosene 4.59 3.9 7.25 6.95 7.19 6.67
2. Heneicosane 9.63 11.64 6.62 8.59 7.09 7.9
3. (Z)-9-Tricosene 5.49 5.35 0.85 0.93 2.65 2.39
4. (Z)-7-Tricosene 1.73 7.21 6.85 7.47 1.06 1.22
5. Tricosane 28.1 29.82 24.32 25.96 30.89 31.3
6. (Z)-9-Pentacosene 16.33 13.91 12.75 10.32 10.71 11.42
7. (Z)-7-Pentacosene 3.49 3.15 20.14 17.2 2.41 2.81
8. Pentacosane 10.8 7.89 11.7 11.64 13.7 13.37
9. (Z)-9-Heptacosene 5.59 5.22 3.64 4.17 8.12 8.32
10. Heptacosane 5.73 5.24 4.12 4.95 7.87 8.48
11. (Z)-9-Nonacosene 5.35 4.53 0.83 1.07 5.5 4.57
12. (Z)-8-(Z)-20-Hentriacontadiene 3.18 2.12 0.95 0.73 2.8 1.54
Total (%) 100 100 100 100 100 100
Sum of absolute amounts (μg) 2.897 2.5 9.054 2.5 7.423 2.5
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Results

Odour differences among bee populations

Our results show that all natural extracts of virgin C.
cunicularius females of each population investigated
contained all 40 odour compounds identified by Mant et
al. (2005a). Overall significant differences were found
among C. cunicularius populations in absolute amounts of
(1) sum of all compounds (K-W test, P<0.005), (2) sum of
active compounds sensu Mant et al. (2005a) (K-W tests, P
<0.005) and (3) sum of non-active compounds (ANOVA
F(4,132)=6.342, P=0.0001). Within all populations, except
Ondres-plage (F), significantly higher absolute amounts of
behaviourally active compounds were found compared to
non-active compounds (Table 1).

A CDF analysis performed with all behaviourally active
cuticular hydrocarbons recorded in solvent extracts of
attractive C. cunicularius females allowed us to resolve
the five bee populations into weakly overlapping groups
(Fig. 2). This CDF analysis rejects the null hypothesis of
homogeneity of covariance matrices (Box’s M=538.135,
P<0.001; small Wilks’ λ values: Wλ1=0.025; Wλ2=0.115
and associated P1 and P2<0.001). The high discriminatory
ability of the canonical discriminant functions 1 and 2
(plotted in Fig. 2) provides evidence for the importance of
the independent variables (i.e. all behaviourally active
odour compounds, including compounds 6–8 in Table 2)
to the discriminant analysis. Canonical correlation values
close to 1 (Cc1=0.884; Cc2=0.822) associated with the
two CDFs plotted in Fig. 2 further account for the

significant contribution of the first two canonical discrim-
inant functions to the resolving of all five C. cunicularius
populations into weakly overlapping groups. The two CDFs
plotted in Fig. 2 account for 76.4% of the overall variance
among groups, which further indicates their great discrim-
inatory ability in the model (81.0% of cross-validated
grouped cases were correctly classified). Overall, more than
50% of all cross-validated samples were assigned correctly
to their population by the two CDFs [Fussach (A), 51.5%;
Vienna (A), 50.1%; Neuhausen, 98.2%; Ondres-plage,
85%; Monte Gargano, 81.3%].

A Mantel test performed with all active compounds
revealed a significant positive correlation between diver-
gence in chemical compounds profiles and geographical
distance among populations (y=0.0001x+0.1649; P<0.05;
r=0.654; Fig. 3).

Behavioural experiments

Results from bioassays carried out at Fussach (A) and
Neuhausen (CH; Fig. 1) indicate that male bees from both
the Austrian and the Swiss populations were able to
discriminate between the three synthetic odour blends with
different relative amounts of behaviourally active cuticular
hydrocarbons (Fig. 4). We also found that the three
synthetic blends triggered different levels of attraction in
C. cunicularius males and that synthetic blends designed to
mimic sex pheromones from allopatric populations were
significantly more attractive to patrolling males than
synthetic copies of sympatric sex pheromones at both sites
of bioassays [i.e. the Fussach (A) and Monte Gargano (It)

Fig. 2 Population differentia-
tion in cuticular hydrocarbons
in virgin C. cunicularius
females. Canonical discriminant
function (CDF) plot of all
behaviourally active compounds
(relative proportions, in %)
found in epicuticular extracts of
the female bees. Functions 1 and
2 account for 76.4% (48.4 and
28.0%, respectively) of the total
variability among populations
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blends were significantly more attractive than the Neuhausen
(CH) blend at Neuhausen (CH), whereas the Monte Gargano
(It) and the Neuhausen (CH) blends were significantly more
attractive than the Fussach (A) blend at Fussach (A)]
(Fig. 3). The differences in total responses between the
two sites of bioassays are due to the higher bee density in
Neuhausen (CH) than Fussach (A).

Discussion

Sex pheromone “dialects”

In this paper, we report “dialects” in both absolute and relative
amounts of compounds of the female sex pheromone in the
wild bee C. cunicularius. Multivariate analyses performed
with relative amounts of behaviourally active compounds
identified in solvent extracts of virgin C. cunicularius
females allowed us to place the five populations sampled
into weakly overlapping clusters (i.e. population-specific
dialects) within a multidimensional “olfactory landscape”
(Fig. 2). Similar cases of sex pheromone dialects have been
found in the turnip moth Agrotis segetum, for which females
from segregated populations use population-specific blends
consisting of different relative amounts of the same
behaviourally active compounds (see e.g. Löfstedt et al.
1986; Hansson et al. 1990; Toth et al. 1992). In Drosphila
mojavensis, where cuticular hydrocarbons are involved in
mate recognition, Stennet and Etges (1997) and Etges and
Ahrens (2001) have provided evidence for population-
specific patterns of long-chain cuticular hydrocarbons.
Collectively, these results suggest that polymorphism in sex
pheromone systems among segregated populations might
concern a wide array of insect taxa.

Our results also show significant spatial structure in the
female sex pheromone in this bee species, i.e. that odour
samples from neighbouring populations, presumably encom-
passing the genetically most similar individuals, cluster
together in the olfactory landscape (Figs. 2 and 3). Although
this finding strongly suggests isolation-by-distance and a
prevalent genetic basis of differences in patterns of behav-
iourally active compounds, the impact of environmental
components such as changes in larval rearing substrates on
variation in chemical signals cannot be ruled out a priori.
Indeed, persuasive fits between shifts in larval diet and the
resulting differences in cuticular hydrocarbon profiles in
adults have already been documented in ants (see e.g. Liang
and Silverman 2000) and in Drosophila (see e.g. Jallon and
David 1987; Markow and Toolson 1990; Stennett and Etges
1997) where changes in CHC profiles have been shown to
affect dramatically species recognition and, in some cases, to
result in premating isolation among lineages adapted to dif-
ferent foraging resources (Koepfer 1987a,b; Etges 1992;

Etges and Ahrens 2001). The genetic basis of population
differences in sex pheromone signals has, however, been
recently supported by Watts et al. (2005) in the tropical fly
Lutzomyia longipalpis. These authors combined data on sex
pheromone chemistry and phylogeography from multiple
populations and showed that spatial genetic structure was
detected and that increased genetic differences among
populations were positively correlated with increased differ-
ences in sex pheromone chemistry. Likewise, analyses
performed by Dapporto et al. (2004) on CHC profiles in
the paper wasp Polistes dominulus have shown that island
and mainland populations sampled in the Tyrrhenian region
formed separate clusters. As suggested by Dapporto et al.
(2004), part of the explanation for this finding could be that
the similarities in proportions of CHCs might reflect the
closer genetic relatedness among individuals inhabiting
populations of islands vs the mainland. In C. cunicularius,
future studies on genetic structure of populations and their
relatedness may help to elucidate whether population
differentiation in sex pheromones are primarily determined
by genetic and/or environmental factors.

Odour preferences in C. cunicularius males

It has long been argued that population divergence in secondary
sex traits and associated mate preferences has the potential to
lead to the establishment and evolution of pre-zygotic isolating
barriers among segregated populations (Andersson 1994;
West-Eberhard 1983). For example, in Drosophila mojaven-
sis, premating isolation has been described as a consequence
of significant differentiation in both courtship (chemical)
signals and mate preferences for these traits among popula-
tions (Krebs and Markow 1989; Etges 1992). Similarly,
Roelofs et al. (2002) have demonstrated the occurrence of
shifts in the structure of sex pheromone components in
Ostrinia moths. Along with the existence of rare males that
might track these changes and respond to the new pheromone
blend, such changes may lead to the evolution of an Ostrinia
species with distinct sex pheromone signal.

Our study shows that patrolling C. cunicularius males
from both sites of bioassays perceive subtle differences

Fig. 3 Mantel’s correlogram of Euclidean distance among chemical
samples in active compounds plotted by spatial distance among
sample sites (Mantel’s r=0.654; P<0.05 with 99 permutations)
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among odour samples that consist of identical key com-
pounds but differ in relative amounts (Fig. 4), a phenomenon
that was already shown in other non-Apis bees such as
Andrena nigroaenea (Schiestl and Ayasse 2000), Lasioglos-
sum malachurum (Ayasse et al. 1999) and Osmia rufa
(Ayasse and Dutzler 1998; Ayasse et al. 2000). Our study
provides a multiple-population comparison of male odour
preferences in a solitary bee and shows that patrolling C.
cunicularius males are attracted to sex pheromone dialects
from “exotic” (i.e. allopatric) populations, which suggests
the sharing of mate recognition cues (sensu Paterson 1985)
among segregated populations in this solitary bee species.

Many studies on sexual selection have largely docu-
mented that individuals often recognize and prefer to mate
with individuals from “local” (or proximate) vs “exotic”
populations (see e.g. Andersson 1994 and references
therein; Boake 2002; Wong et al. 2004 and references
therein). By contrast, our bioassays show that patrolling C.
cunicularius males prefer odour types different from those
found in their own population (i.e. “exotic” sex phero-
mones). We suggest two explanations for this “exotic
effect”: (1) As C. cunicularius is a gregarious solitary bee
for which males search for mates in a restricted area of their
nesting/emergence site (Peakall and Schiestl 2004), prefer-
ences for “exotic” pheromone signals in patrolling males
may be innate and promote outbreeding by avoiding sibling
mating, should the opportunity arise. The recourse to
odour-based preferences for females to which males are

probably less related has rarely been found before in bees
(but see Smith and Ayasse 1987; Smith and Breed 1995),
yet other similar cases have been found in flies (reviewed
by Boake 2002), female crickets (Simmons 1989) as well as
in mammals (Potts and Wakeland 1993; Clarke and Faulkes
1999), where it has also been advocated that such instances
of odour-based mate choosiness might mirror optimal
outbreeding. (2) Alternatively, odour-based discrimination
may reflect learning abilities of patrolling C. cunicularius
males, which prefer odour cues dissimilar to those they
have encountered during earlier mating attempts (e.g.
Wcislo 1992 and references therein; Ayasse et al. 2000).
Under strong male–male competition for access to emerg-
ing, virgin females and given that females in this solitary
bee species are monandrous (Bergström and Tengö 1978),
such odour preferences might help to avoid futile mating
attempts by successively directing males towards virgin
females they have not yet encountered.

Collectively, as our results show, population divergence in
female mating signals and associated male preferences in C.
cunicularius is unlikely to lead to speciation (i.e. premating
isolation by non-recognition of female secondary sex traits),
as synthetic copies of allopatric female mating signals were
shown to be cross-attractive to patrolling C. cunicularius
males from distant populations (Fig. 4). Besides, the odour
preferences for “exotic” blends found in males of C.
cunicularius (Fig. 4) are unlikely to select for extreme
deviation from the median female sex pheromone blend

Fig. 4 Comparative level of attractiveness of the synthetic sex
pheromone trio [Fussach (A), Monte Gargano (It) and Neuhausen
(CH)] when assayed individually at Fussach (A, left) and Neuhausen
(CH, right) on patrolling males of C. cunicularius. One-way ANOVA

with LSD post-hoc test (α=0.05). Different superscript letters on top
of error bars indicate significant differences; the number of replicates
are listed underneath the columns
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within populations because females are the limiting sex and
hence, little subjected to male-mediated selection. However,
mate preferences in male bees such as those reported here for
C. cunicularius might transfer into selection on floral traits in
those orchids that imitate mating signals of female hymenop-
terans for pollination and that are limited in their reproductive
success by access to pollinators (see e.g. Schiestl 2004).

Evolutionary implications for Colletes–Ophrys mimicry
systems

Insect communication signals are sometimes imitated by other
organisms, which exploit the behaviour of the duped species
(Dettner and Liepert 1994; Maynard Smith and Harper 2003
and references therein). A well-known case of this sort
involves orchids of the genus Ophrys whose flowers mimic
chemical, visual and tactile stimuli of virgin female bees (the
model) and are pollinated exclusively by sexually aroused
males of the respective species (the dupe or operator;
reviewed by Schiestl 2005). Among the puzzling diversity
of Ophrys species specialized on different pollinator species,
at least four Ophrys species have evolved to mimic C.
cunicularius mating cues (Mant et al. 2005b and references
therein). One of them is Ophrys exaltata Tenore, which emits
a species-specific floral odour blend consisting of com-
pounds identical to those employed by C. cunicularius
females to attract their mate (Mant et al. 2005a). In this
orchid species, population differentiation in the floral odour
was found to be stronger in floral odour compounds involved
in pollinator attraction (active compounds) as compared to
non-active compounds (Mant et al. 2005b), which implied
pollinator-imposed selection mediated by population-specific
preferences of male bees for mating cues. Our study
demonstrates population-specific preferences of pollinators,
the requirement for such a scenario, and thus supports the
findings of Mant et al. (2005b).

Although it is often predicted for Batesian mimicry
systems that mimics (i.e. orchids) are selected for signal
refinement to optimally match the signal emitted by their
model (i.e. virgin female bees; Fisher 1930; Turner 1988 and
references therein; Stowe 1988), our finding of an “exotic
effect” predicts that the orchids should evolve “exotic”
odour bouquets (yet remaining within the boundaries of the
communication channel to ensure attractiveness to the male
pollinators), which slightly differ from the female bees
within populations, and thus, be preferred by C. cunicular-
ius males. These differences between orchid and female bee
signals might, however, only be detectable through multi-
variate comparisons of orchid odour and female sex
pheromone, using large sample sizes, which has not been
employed in any orchid-pollinator study so far. We are
currently investigating odour bouquets of orchids and
virgin female bees from multiple populations to test, at

the population scale, whether population differentiation in
male bee preferences drives associated divergence in odour
between female bees and the Ophrys species they pollinate.

Acknowledgement We sincerely thank C. Schulz and W. Francke
(University of Hamburg, Germany) for providing us with synthetic
compounds. J. Alcock (Arizona State University, USA) is gratefully
acknowledged for having provided helpful comments on an earlier version
of the manuscript. D. Genoud (Tarnos, France), G. Mahé (Saint-Nazaire,
France), C.E. Hermosilla (La Rioja, Spain), G. Hölzler (Vienna, Austria)
and A.Müller (ETH Zürich, Switzerland) shall also be warmly thanked for
their useful help in collecting specimens. G. Caruso (Cambridge
University, UK) provided us with generous help for the preparation of
Fig. 1. We thank two anonymous referees for their valuable comments.
The experiments comply with the current laws of the country in which
they were performed. NJV was financially supported by the Belgian
“Fonds pour la formation à la Recherche dans l’Industrie et l’Agricul-
ture” (F.R.I.A.) and by a “Directeur Moiny” studentship delivered by the
Order of Leopold ASBL (Belgium); JM and FPS were funded by the
Swiss National Fund (SNF; project 3100-0681).

References

Andersson M (1994) Sexual selection. Monographs in behaviour and
ecology. Princeton University Press, USA

Antonovics J (1971) The effects of a heterogeneous environment on
the genetics of natural populations. Am Sci 59:593–599

Ayasse M, Dutzler G (1998) The function of pheromones in the
mating biology of Osmia bees (Hymenoptera: Megachilidae).
Social insects at the turn of the millenium. Proceedings of the
13th International Congress IUSSI, Adelaide, Australia. Flinders
University Press, p 42

Ayasse M, Engels W, Lübke G, Taghizadeh T, Francke W (1999)
Mating expenditures reduced via female sex pheromone modu-
lation in the primitively eusocial halictine bee, Lasioglossum
(Evylaeus) malachurum (Hymenoptera: Halictidae). Behav Ecol
Sociobiol 45:95–106

Ayasse M, Dutzler G, Schiestl FP, Ibarra F, Francke W (2000)
Identification of female and male sex pheromone in the solitary
bee Osmia rufa (Hymenoptera: Megachilidae). International
Congress of Entomology, Chemistry and Physiological Ecology
Symposium and Poster Session, Brazil, Abstract Book II, p 21

Ayasse M, Paxton R, Tengö J (2001) Mating behaviour and chemical
communication in the order Hymenoptera. Annu Rev Entomol
46:31–78

Bergström G, Tengö J (1978) Linalool in mandibular gland secretion
of Colletes bees (Hymenoptera: Apoidea). J Chem Ecol 4:447–
449

Boake CRB (2002) Sexual signaling and speciation, a microevolu-
tionary perspective. Genetica 116:205–214

Borg-Karlson A-K, Tengö J, Valterova I, Unelius CR, Taghizadeh T,
Tolasch T, Francke W (2003) (S)-(+)-linalool, a mate attractant
pheromone component in the bee Colletes cunicularius. J Chem
Ecol 29:1–14

Boughman JW (2002) How sensory drive can promote speciation.
Trends Ecol Evol 17:571–577

Brosius F (2002) SPSS Version 11. Mitp-Verlag, Bonn, Germany
Candolin U (2003) The use of multiple cues in mate choice. Biol Rev

78:575–595
Cane JH, Tengö J (1981) Pheromonal cues direct mate seeking

behaviour of male Colletes cunicularius (Hymenoptera, Colleti-
dae). J Chem Ecol 7:427–436

Behav Ecol Sociobiol (2007) 61:811–821 819



Clarke FM, Faulkes CG (1999) Kin discrimination and female mate
choice in the naked mole-rat Heterocephalus glaber. Proc R Soc
Lond B 266:1995–2002

Dapporto L, Palagi E, Turillazzi S (2004) Cuticular hydrocarbons of
Polistes dominulus as a biogeographic tool: a study of popula-
tions from the Tuscan Archipelago and surrounding areas. J
Chem Ecol 30:2139–2151

Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu
Rev Entomol 39:129–154

Eickwort GC, Ginsberg HS (1980) Foraging and mating behaviour in
Apoidea. Annu Rev Entomol 25:421–446

Etges WJ (1992) Premating isolation is determined by larval
substrates in cactophilic Drosophila mojavensis. Evolution
46:1945–1950

Etges WJ, Ahrens MA (2001) Premating isolation is determined by
larval rearing substrates in cactophilic Drosophila mojavensis. V.
Deep geographic variation in epicuticular hydrocarbons among
isolated populations. Am Nat 158:585–598

Fisher RA (1930) The genetical theory of natural selection. Clarendon
Press, Oxford

Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J
Anim Ecol 71:757–764

Hansson BS, Toth M, Löfstedt C, Szöcs G, Subchev M, Löfqvist J
(1990) Pheromone variation among eastern European and a
western Asian population of the turnip moth Agrotis segetum. J
Chem Ecol 16:1611–1622

Hedrick PW, Ginevan ME, Ewing EP (1976) Genetic polymorphism
in heterogeneous environments. Ann Rev Ecolog Syst 7:1–32

Jallon J-M, David JR (1987) Variations in cuticular hydrocarbons
among the eight species of the Drosophila melaonogaster
subgroup. Evolution 41:294–302

Jordan DS (1905) The origin of species through isolation. Science
22:545–562

Kawazu K, Hasegawa J-I, Honda H, Ishikawa Y, Wakamura S,
Sugie H, Kamiwada H, Kamimuro T, Yoshiyasu Y, Tatsuki S
(2000) Geographical variation in female sex pheromones of the
rice leaffolder moth, Cnaphalocrocis medinalis: identification of
pheromone components in Japan. Entomol Exp Appl 96:103–
109

Klun JA, Anglade PL, Baca F, Chapman OL, Chiang HC, Danielson
DM, Faber W, Fels P, Hill RE, Hudon M, Kania CS, Keaster AJ
et al (1975) Insect sex pheromones: intraspecific pheromone
variability of Ostrinia nubilalis in North America and Europe.
Environ Entomol 4:891–894

Knudsen JT, Gershenzon J (2006) The chemical diversity of floral
scent. In: Dudareva NA, Pichersky E (eds) Biology of floral
scent. Taylor and Francis Group, Boca Raton, USA, pp 27–52

Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a
checklist of volatile compounds isolated by head-space tech-
niques. Phytochemistry 33:253–280

Koepfer HR (1987a) Selection for sexual isolation between geograph-
ic forms of Drosophila mojavensis. I. Interactions between the
selected forms. Evolution 41:37–48

Koepfer HR (1987b) Selection for sexual isolation between geograph-
ic forms of Drosophila mojavensis. II. Effects of selection on
mating preference and propensity. Evolution 41:1409–1413

Krebs RA, Markow TA (1989) Courtship behaviour and control of
reproductive isolation in Drosophila mojavensis. Evolution
43:908–912

Lande R (1981) Models of speciation by sexual selection on polygenic
traits. Proc Natl Acad Sci USA 78:3721–3725

Larsen O, Gleffe G, Tengö J (1986) Vibration and sound communi-
cation in solitary bees and wasps. Physiol Entomol 11:287–296

Larsson FK, Tengö J (1989) The effects of temperature and body size on
the mating pattern of a gregariously nesting bee, Colletes cunicular-
ius (Hymenoptera: Colletidae). Ecol Entomol 14:279–286

Liang D, Silverman J (2000) “You are what you eat”: diet modifies
cuticular hydrocarbons and nestmate recognition in the Argentine
ant, Linepithema humile. Naturwissenschaften 87:412–416

Löfstedt C (1993) Moth pheromone genetics and evolution. Philos
Trans R Soc Lond B 340:167–177

Löfstedt C, Löfqvist J, Lanne BS, Van Der Pers JNC, Hansson BS (1986)
Pheromone dialects in European turnip moths Agrotis segetum.
Oikos 46:250–257

Mader D (1999) Geologische und biologische Entomoökologie der
rezenten Seidenbiene Colletes. Logabook, Köln

Mant JG, Brändli C, Vereecken NJ, Schulz CM, Francke W, Schiestl
FP (2005a) Cuticular hydrocarbons as sex pheromone in Colletes
cunicularius (Hymenoptera: Colletidae) and the key to its
mimicry by the sexually deceptive orchid Ophrys exaltata
(Orchidaceae). J Chem Ecol 31:1765–1787

Mant JG, Peakall R, Schiestl FP (2005b) Does selection on floral odor
promote differentiation among populations and species of the
sexually deceptive orchid genus Ophrys? Evolution 59:1449–1463

Mantel N (1967) The detection of disease clustering and a generalized
regression approach. Cancer Res 27:209–220

Markow TA (1991) Sexual isolation among populations of Drosophila
mojavensis. Evolution 45:1525–1529

Markow TA, Toolson EC (1990) Temperature effects on epicuticular
hydrocarbons and sexual isolation in Drosophila mojavensis. In:
Barker JSF, Starmer WT, MacIntyre RJ (eds) Ecological and
evolutionary genetics of Drosophila. Monographs in evolution-
ary biology. Plenum, New York, pp 315–331

Maynard Smith J, Harper D (2003) Animal signals. Oxford series in
ecology and evolution. Oxford University Press, USA

McElfresh JS, Millar JG (2001) Geographic variation in the
pheromone system of the saturniid moth Hemileuca eglanterina.
Ecology 82:3505–3518

Michener CD (1974) The social behaviour of the bees. Harvard
University Press, Cambridge, MA

Miller JR, Roelofs WL (1980) Individual variation in sex pheromone
component ratios in two populations of the redbanded leafroller
moth, Argyrotaenia velutinana. Environ Entomol 9:359–363

Noskiewicz J (1936) Die Palearktischen Colletes–Arten. Prace
Naukowe, Lwowie

O’Toole C (1994) Who cares for solitary bees? In: Matheson A (ed)
Forage for bees in an agricultural landscape. International Bee
Research Association, Cardiff, pp 47–56

Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection
and speciation. Trends Ecol Evol 16:364–371

Paterson HEH (1985) The recognition concept of species. In: Vrba ES
(ed) Species and speciation. Transvaal Museum Monograph
No.4, Pretoria, pp 21–29

Peakall R, Schiestl FP (2004) A mark-recapture study of male Colletes
cunicularius bees: implications for pollination by sexual decep-
tion. Behav Ecol Sociobiol 56:579–584

Peakall R, Smouse PE (2005a) GenAlEx 6: Genetic analysis in Excel.
Population genetic software for teaching and research. The
Australian National University, Canberra, Australia. Available
online at http://www.anu.edu.au/BoZo/GenAlEx/

Peakall R, Smouse PE (2005b) GenAlEx 6: genetic analysis in excel.
Population genetic software for teaching and research. Mol Ecol
Notes 6:288–295

Potts WK, Wakeland EK (1993) Evolution of MHC genetic diversity—
a tale of incest, pestilence and sexual preference. Trends Genet
9:408–412

Raguso RA, Pichersky E (1999) A day in the life of the linalool molecule:
chemical communication in a plant-pollinator system. Part 1: linalool
biosynthesis in flowering plants. Plant Species Biol 14:95–120

Roelofs WL, Liu W, Hao G, Jiao H, Rooney AP, Linn CE Jr (2002)
Evolution of moth sex pheromones via ancestral genes. Proc Natl
Acad Sci USA 99:13621–13626

820 Behav Ecol Sociobiol (2007) 61:811–821

http://www.anu.edu.au/BoZo/GenAlEx/


Schiestl FP (2004) Floral evolution and pollinator mate choice in a
sexually deceptive orchid. J Evol Biol 17:67–75

Schiestl FP (2005) On the success of a swindle: pollination by
deception in orchids. Naturwissenschaften 92:255–264

Schiestl FP, Ayasse M (2000) Post-mating odour in females of the
solitary bee, Andrena nigroaenea (Apoidea, Andrenidae), inhibits
male mating behaviour. Behav Ecol Sociobiol 48:303–307

Schluter D (2000) The ecology of adaptive radiation. Oxford series in
ecology and evolution. Oxford University Press, New York

Simmons LW (1989) Kin recognition and its influence on mating
preferences of the field cricket, Gryllus bimaculatus (Degeer).
Anim Behav 38:68–77

Simpson BB, Neff JL (1981) Floral rewards: alternative to pollen and
nectar. Ann Mo Bot Gard 68:301–322

Smith BH, Ayasse M (1987) Kin-based male mating preferences in
two species of halictine bees. Behav Ecol Sociobiol 20:313–
318

Smith BH, Breed MD (1995) The chemical basis for nest-mate
recognition and mate discrimination in social insects. In: Cardé
RT, Bell WJ (eds) Chemical ecology of insects 2. Chapman &
Hall, London, pp 287–317

Stennett MD, Etges WJ (1997) Pre-mating isolation is determined by
larval rearing substrates in cactophilic Drosophila mojavensis.
III. Epicuticular hydrocarbon variation is determined by use of
different host plants in Drosophila mojavensis and Drosophila
arizonae. J Chem Ecol 23:2803–2824

Stowe MK (1988) Chemical mimicry. In: Spencer KC (ed) Chemical
mediation of coevolution. Academic, London, pp 513–580

Toth M, Löfstedt C, Blair BW, Cabello T, Farag AI, Hansson BS,
Kovalev BG, Maini S, Nesterov EA, Pajor I, Sazanov AP,
Shamshev IV, Subchev M, Szöcs G (1992) Attraction of male
turnip moths Agrotis segetum (Lepidoptera: Noctuidae) to sex
pheromone components and their mixtures at 11 sites in Europe,
Asia, and Africa. J Chem Ecol 18:1337–1347

Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented
landscapes. Annu Rev Entomol 49:405–430

Turner JRG (1988) The evolution of mimicry: a solution to the
problem of punctuated equilibrium. In: Brower LP (ed) Mimicry
and the evolutionary process. The University of Chicago Press,
Chicago, pp 42–66

Watts PC, Hamilton JGC, Ward RD, Noyes HA, Souza NA, Kemp SJ,
Feliciangeli D, Brazil R, Maingon RDC (2005) Male sex
pheromones and the phylogeographic structure of the Lutzomyia
longipalpis species complex (Diptera: Psychodidae) from Brazil
and Venezuela. Am J Trop Med Hyg 73(4):734–743

Wcislo WT (1992) Attraction and learning in mate-finding by solitary
bees, Lasioglossum (Dialictus) figueresi Wcislo and Nomia
triangulifera Vachal (Hymenoptera: Halictidae). Behav Ecol
Sociobiol 31:139–148

West-Eberhard MJ (1983) Sexual selection, social competition, and
speciation. Q Rev Biol 58:155–183

Wong BBM, Keogh JS, Jennions MD (2004) Mate recognition in a
freshwater fish: geographical distance, genetic differentiation,
and variation in female preference for local over foreign males. J
Evol Biol 17:701–708

Wright S (1943) Isolation by distance. Genetics 28:114–138

Behav Ecol Sociobiol (2007) 61:811–821 821


	Population differentiation in female sex pheromone and male preferences in a solitary bee
	Abstract
	Introduction
	Materials and methods
	Sample collection
	Chemical analyses
	Preparation of synthetic blends
	Behavioural experiments
	Statistical analyses

	Results
	Odour differences among bee populations
	Behavioural experiments

	Discussion
	Sex pheromone “dialects”
	Odour preferences in C. cunicularius males
	Evolutionary implications for Colletes–Ophrys mimicry systems

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


