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Abstract. Consider the following general communication problem: Alice and
Bob have to simulate a probabilistic function p, that with every (x, y) ∈ X × Y
associates a probability distribution on A × B. The two parties, upon receiving
inputs x and y, need to output a ∈ A, b ∈ B in such a manner that the (a, b) pair
is distributed according to p(x, y). They share randomness, and have access to a
channel that allows two-way communication. Our main focus is an instance of the
above problem coming from the well known EPR experiment in quantum physics.
In this paper, we are concerned with the amount of communication required to
simulate the EPR experiment when it is repeated in parallel a large number of
times, giving rise to a notion of amortized communication complexity.

In the 3-dimensional case, Toner and Bacon showed that this problem could be
solved using on average 0.85 bits of communication per repetition [1]. We show
that their approach cannot go below 0.414 bits, and we give a fundamentally
different technique, relying on the reverse Shannon theorem, which allows us
to reduce the amortized communication to 0.28 bits for dimension 3, and 0.410
bits for arbitrary dimension. We also give a lower bound of 0.13 bits for this
problem (valid for one-way protocols), and conjecture that this could be improved
to match the upper bounds. In our investigation we find interesting connections
to a number of different problems in communication complexity, in particular to
[2]. The results contained herein are entirely classical and no knowledge of the
quantum phenomenon is assumed.

1 Communication Complexity of Distributions

Communication complexity has been an amazingly potent tool for studying lower
bounds for circuits, branching programs, VLSI and streaming data. Lately it is also
used to quantify non-local nature of quantum systems.

Recall that in the original version of the model [3] Alice and Bob jointly evaluate a
Boolean predicate f(x, y) (x ∈ X , y ∈ Y) through exchanging messages. Throughout,
we will be concerned with the following generalization of the model:

Let X and A be the sets of inputs and possible outputs for Alice, and Y and B be the
sets of inputs and possible outputs for Bob.

Task: A task p is specified by a function p : X × Y → Distrib(A × B), where
Distrib(A× B) is the set of all probability distributions on A× B.
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Alice and Bob meet the specification p if upon receiving x ∈ X and y ∈ Y their
output pair (a, b) is distributed according to p(x, y). Task p is completely described by
the probabilities

p(a, b||x, y)
def
= the probability of (a, b) under distribution p(x, y).

Alice and Bob share randomness from a common source Λ, i.e. in addition to their input
they both receive λ, where λ ∈ Λ is picked randomly.

Even with unlimited computational power Alice and Bob usually need to commu-
nicate to produce the desired output. The exact rules concerning the communication
are critical for our analysis of very low communication problems. Under the wrong
definition, Alice may signal to Bob simply by her choice of sending or not sending
a bit. To exclude this, we postulate that Alice and Bob are either in send-mode or in
receive-mode or in output mode. The communication runs in rounds. After each round
the players get into a new mode, which is a function of the player’s input, the shared
random string λ, and the messages received so far by the player. A protocol must satisfy
that in each round either of two cases happens: 1. one player is in send-mode and the
other is in receive mode; 2. both players are in output mode. No other combination is
permitted. Note that if the parties needed to make random choices, we could add them
to the shared randomness, Λ. Thus we assume that the protocol is deterministic for any
fixed λ.

Protocol: A protocol P for a given simulation task p is a probability distribution p(λ)
over deterministic protocols Pλ, each solving a task pλ, such that p =

∑
λ p(λ)pλ.

Note that since any λ ∈ Λ corresponds to a deterministic protocol, we may extend Λ to
the set of all possible deterministic communication protocols with inputs in X ×Y and
outputs in A× B (we would just set p(λ) = 0 for all deterministic protocols that never
occur when executing the shared randomness protocol P ).

LHV: Let Λ0 be the set of all deterministic protocols that do not use any communica-
tion. A task p is in LHV if it may be simulated using a distribution over protocols
in Λ0 only, that is, if there is a zero (classical) communication protocol for it.

LHV stands for Local Hidden Variable referring to λ ∈ Λ, which is the only source
of correlation between Alice and Bob. Note that these correlations do not violate lo-
cality because we assume that the parties receive the “hidden” λ when they are not yet
spatially separated.

Fix the input and output sets X ,Y,A,B for the rest of this paragraph.

Bell inequality: A Bell inequality is an inequality of the form
∑

x,y,a,b

Bxyab p(a, b||x, y) ≤ B0, (1)

which holds for all p ∈ LHV.

Notice that the left hand side of Eq. (1) is a linear functional, which we will shortly
denote as B(p). A task p is in LHV if and only if it satisfies all Bell inequalities.
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In other words, LHV is a convex set. We are now interested in tasks outside LHV,
which may be identified by the fact that they violate some Bell inequality. This means
that such a task p may not be simulated using shared randomness only, and that some
additional communication is required. Let P be a communication protocol simulating
p(a, b||x, y) using shared randomness Λ, M(x, y, λ) be the transcript of the messages
on input x and y when the shared randomness is fixed to λ, and |M | be the length in
bits of this transcript. We define the worst-case cost Cw(P ) as the maximal number of
bits communicated between Alice and Bob in any particular execution of the protocol,
that is, Cw(P ) = maxx,y,λ |M(x, y, λ)|, where the maximum is over inputs (x, y) ∈
X × Y and shared randomness λ ∈ Λ such that p(λ) �= 0. We then define the worst-
case communication complexity as Cw(p) = minP Cw(P ). In this paper, we are more
interested in the average cost:

Average cost: Given a distribution D on X × Y , the average cost CD(P ) is the ex-
pected number of bits communicated between Alice and Bob, where the expecta-
tion is taken over the shared randomness λ ∈ Λ and the inputs (x, y) ∈ D,

CD(P ) =
∑

λ∈Λ

p(λ)
∑

(x,y)∈X×Y
D(x, y) |M(x, y, λ)|. (2)

Average communication complexity: C(p) = maxD CD(p), where CD(p) =
minP CD(P ) is the distributional average communication complexity for fixed
input distribution D, the minimum being taken over all protocols P implementing
p, and the maximum over all distributions D on X × Y .

We emphasize that even when we are concerned with the average case complexity,
P needs to meet the specification for every input pair (x, y) ∈ X × Y .

Example. The CHSH correlations (pμ): Let us define the task pμ for 0 ≤ μ ≤ 1 as
follows: X = Y = {0, 1}, A = B = {1,−1} and

pμ(a, b||x, y) =
1 + μ ab (−1)x·y

4
.

The task is defined in such a way that for all (x, y) ∈ X ×Y , the relation ab = (−1)x·y

between the inputs and the outputs has to be satisfied with probability 1+μ
2 . It is not

hard to show that pμ can be implemented classically with zero communication only
for 0 ≤ μ ≤ 1/2. In particular, for μ > 1/2, pμ violates the so-called CHSH Bell
inequality [4]:

∑

x,y,a,b

ab (−1)x·yp(a, b||x, y) ≤ 2,

so that in a classical world, this task requires communication to be implemented. How-
ever, if Alice and Bob are separated in space, but they share a pair of entangled qubits,
in the quantum world they can solve p1/

√
2 with no communication whatsoever. This is
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because quantum correlations may violate Bell inequalities, and therefore have a non-
local character, as was first shown by Bell [5].

The EPR-Bohm experiment (pdim=d): The inputs to Alice and Bob are unit vectors x
and y from the d-dimensional sphere Sd−1. The output is again an element of {1,−1},
a for Alice, and b for Bob, with the specification

pdim=d(a, b||x, y) =
1 − ab x · y

4
. (3)

pdim=d arises from the EPR-Bohm experiment [6,7], and can be solved in the quantum
world with zero communication.

The communication complexity of pdim=d, and quantum distributions in general,
has been studied in a series of paper [8,9,10,11]. pdim=3 is particularly interesting
because it corresponds to Bohm’s original version of the experiment, involving a max-
imally entangled qubit pair, the most simple quantum system that captures the essen-
tial properties of entanglement. The best known protocol for pdim=3 was presented
by Toner and Bacon, and uses one bit of communication [1]. This was shown to be
optimal, even for the average complexity, by Barrett, Kent and Pironio [12], hence,
Cw(pdim=3) = C(pdim=3) = 1 bit.

The higher dimensional case p = pdim=d has been studied by Degorre, Laplante and
Roland [13], who proved that the average communication complexity scaled at most as
C(pdim=d) = O(log d). This was significantly improved by Regev and Toner [14], who
showed that bounded worst-case communication was sufficient, by providing an explicit
2-bit protocol, so that Cw(pdim=d) ≤ 2. When considering average communication,
they could improve their protocol to 1.82 bits.

The amortized communication cost of simulating pdim=d (and its powers) will be
the focus of this paper, and will be described in more details in the next section.

Finiteness: In this example X , Y , and probability space Λ are infinite, equipped with
some measure. The communication still needs to be bounded. Note that as in the finite
case, each bit communicated in the protocol by a given party can be described by a mea-
surable function that goes from this party’s input, the shared randomness and the bits
communicated so far into {0, 1}. Even though the domain of these functions is infinite,
the parties can compute them for free because they are computationally unbounded. We
also need to modify formula (2) by replacing the sum with an integral.

2 Amortization

We now consider the task p⊗n, given by the n-fold parallelization of p,

p⊗n(a, b||x, y) =
n∏

i=1

p(ai, bi||xi, yi).

We then define the following communication complexity.

Amortized communication complexity: C∞(p) = maxD CD
∞(p), where CD

∞(p) =
limn→∞ CD⊗n

(p⊗n)/n is the distributional amortized communication complex-
ity, and D⊗n(x, y) =

∏n
i=1 D(xi, yi).
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2.1 Entropic Complexity

Let P be a communication protocol simulating p(a, b||x, y) using shared randomness
Λ, and let D be the input distribution.

Entropic cost CD
H (P ): Conditional entropy H(M |Λ) of the transcript M of the mes-

sages communicated between Alice and Bob, given the shared randomness λ ∈ Λ.

We also define the corresponding (distributional and non-distributional) entropic com-
munication complexities for a task p as CD

H (p) = minP CD
H (P ) and CH(p) =

maxD CD
H (p), where the minimum is taken over all protocols P implementing p, and

the maximum is taken over all distributions D on X × Y .

2.2 The Input Distribution

As first observed by Yao [15], von Neumann’s minmax principle [16] implies the fol-
lowing statement.

Theorem 1. Let C∗ be any of C, C∞, CH . We have C∗(p) = minP maxD CD∗ (P ).

Note that for a fixed protocol P , the maximum over distributions D is achieved for a
given input couple (x, y) ∈ X × Y .

For specific tasks, symmetries allow to make assumptions on the hardest distribution,
which attains C∗(p) = maxD minP CD

∗ (P ). In particular, for the CHSH problem pμ,
we can show that the uniform distribution is the hardest distribution.

Claim 1. Let C∗ be any of C, C∞, CH . Then, C∗(pμ) = CU
∗ (pμ), where U is the

uniform distribution on {0, 1}2.

Similarly, for the EPR-Bohm problem pdim=d, we may assume that the hardest distri-
bution has uniform marginals (this observation is due to Toner and Bacon [1]). For an
input distribution D, we will denote DA and DB the marginal distributions of x and y,
respectively.

Claim 2. Let C∗ be any of C, C∞, CH . Then, there exists a distribution U on
Sd−1 × Sd−1 with uniform marginals UA and UB such that CU

∗ (pdim=d) =
maxD CD∗ (pdim=d).

Note that for pdim=d, we can only show that the marginals of the hardest distribution
are uniform, not that the hardest distribution itself is uniform. However, let us note that
when restricting to one-way communication protocols, the communication complexity
only depends on the marginal distribution for the player sending the messages. For any
notion of communication complexity, we add a superscript → when we only consider
protocols restricted to one-way communication.

Claim 3. Let C∗ be any of C, C∞, CH , CI , and let D, D′ be two distributions on X×Y
having the same marginal distributions for x, that is, DA = D′

A. Then, C→,D
∗ (p) =

C→,D′
∗ (p).
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2.3 Relation between the Communication Complexities

We will use as an intermediate step the following cost for communication protocols
using private randomness only, first introduced by Chakrabarti et al. [17]:

Information cost CD
I (P ): Mutual information I(XY : M) between the inputs X, Y

and the transcript M of the messages communicated between Alice and Bob.

As for the other complexities, we also define the information complexities CD
I (p) =

minP CD
I (P ) and CI(p) = minP maxD CD

I (P ), where the minimum is taken over all
private randomness protocols P implementing p (note that in the presence of shared
randomness, there always exists a protocol P such that CD

I (P ) = 0, so this quantity
would not be relevant). Chakrabarti et al. have shown that this complexity satisfies the
following direct sum property.

Theorem 2 ([17,2]). If D = DA ⊗ DB is a product distribution, then CD⊗n

I (p⊗n) =
n CD

I (p).

In the case of one-way communication, the complexity only depends on the marginal
distribution, so we have the following corollary.

Corollary 3. For one-way communication, C→,D⊗n

I (p⊗n) = n C→,D
I (p).

Finally, we will also use the reverse Shannon theorem [18], which in our notations may
be stated as follows:

Theorem 4 ([18]). Let p : X → Distrib(B) be a simulation task with no output on
Alice’s side, and no input on Bob’s side. Then, C→,D

∞ (p) ≤ I(X : B).

Our statement is slightly different from [18] but may be proved using the same construc-
tion. Informally, it says that a communication channel X → B may be simulated, in
the limit of a large number of repetitions, using (free) shared randomness and one-way
communication at most I(X : B) per repetition.

Proposition 5. The communication complexities satisfy the following relations:
CD

∞(p) ≤ CD
I (p) ≤ CD

H (p) ≤ CD(p) ≤ Cw(p). For a product input distribution
D = DA ⊗ DB , we also have CDA⊗DB∞ (p) = CDA⊗DB

I (p). Similarly, for any in-
put distribution D but restricting to one-way communication protocols, C→,D∞ (p) =
C→,D

I (p).

Proof (Sketch). These relations are based on fundamental propositions of information
theory, such as Shannon’s source coding theorem. Let us focus on the less obvious
relations, involving CI(p).

[CD
I (p) ≤ CD

H (p)]. Let CD
H (p) = H(M |Λ) be achieved by a protocol P with shared

randomness Λ, where M is the transcript of the messages communicated during the
protocol. Let us build a protocol P ′ using private randomness only. In this protocol, only
Alice knows the random string Λ, and her first action is to send Λ to Bob. From there,
the players proceed as in protocol P . Since the transcript of P ′ is the concatenation of
Λ and M , we have CD

I (P ′) = I(XY : MΛ). From the facts that I(XY : Λ) = 0
(since the shared randomness is independent from the inputs), and H(M |XY Λ) = 0
(since the messages depend deterministically on the inputs and the randomness), it is
straightforward to check that I(XY : MΛ) = H(M |Λ).
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[CD
∞(p) ≤ CD

I (p)]. Let CD
I (p) = I(XY : M) be achieved by a protocol P without

shared randomness, where M is the transcript of the messages communicated during
the protocol P . These messages are alternatingly sent by Alice to Bob and vice-versa.
Let us denote by Mk the kth message and M[k] the restriction of the transcript to the
first k messages. We may express the information complexity of p as:

CD
I (p) =

t∑

k=1

I(XY : Mk|M[k−1]),

where t is the maximal number of rounds of the protocol (possibly infinite). Let us focus
on the kth message Mk, and suppose it is sent by Alice to Bob. In a particular execution
of the protocol, the partial transcript M[k−1] will be fixed to some string m, which is at
this point known to both Alice and Bob, so that

I(XY : Mk|M[k−1]) =
∑

m

p(m) I(X : Mk|M[k−1] = m),

where p(m) = Pr[M[k−1] = m], and we have used the fact that Mk only depends on X
and M[k−1], and not on Y . Alice now needs to send Mk to Bob, which only depends on
X when we condition on M[k−1], so she actually needs to simulate a communication
channel X −→ Mk. Since the partial transcript M[k−1] = m happens with probability
p(m), this particular channel will have to be simulated on average n · p(m) times when
repeating the protocol n times, and the reverse Shannon theorem (Theorem 4) ensures
that as n goes to infinity, this simulation may be achieved using shared randomness and
communication I(X : Mk|M[k−1] = m) per repetition. By compressing similarly each
successive message, and averaging over all possible transcripts, we get that CD

∞(p) ≤
I(XY : M) = CD

I (p).

[CDA⊗DB

I (p) ≤ CDA⊗DB∞ (p)]. For a product input distribution D = DA ⊗ DB ,
Theorem 2 implies that CD

I (p) = CD⊗n

I (p⊗n)/n. Moreover, since CD⊗n

I (p⊗n) ≤
CD⊗n

(p⊗n), we obtain CD
I (p) ≤ CD⊗n

(p⊗n)/n and, in the limit n → ∞, CD
I (p) ≤

CD∞(p). Similarly, Corollary 3 implies that for any input distribution but one-way com-
munication, C→,D

I (p) ≤ C→,D∞ (p).

3 Lower Bound on the Entropic Complexity

The previous best upper bound on the amortized communication complexity of pdim=3

is due to Toner and Bacon, who proved that C∞(pdim=3) ≤ Si(π)/(π ln 2) ≈ 0.85
bits [1], where Si(x) is the sine integral function. Indeed, they showed that in their one-
bit protocol, the conditional entropy of the messages given the shared randomness (what
we defined as the entropic cost) is only 0.85 bits, so that one can use Shannon’s source
coding theorem to compress the communication from 1 bit to 0.85 bits. In this section
we prove that the entropic complexity of pdim=d is at least 0.414 bits for any d ≥ 2,
which shows that to reduce the communication further, a new technique is required.
Such a technique will be presented in the next section.
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We prove the lower bound on the entropic complexity by adapting a method proposed
by Pironio for lower bounds on the average communication complexity [19]. The idea
behind the following theorem is that a task p outside LHV may violate a Bell inequality,
so that it will require to use deterministic protocols Pλ for λ /∈ Λ0, simulating tasks pλ

outside LHV, with some probability. More precisely, we consider for each deterministic
protocol a “violation per entropy” ratio. To achieve the same violation as the task p
using as little communication as possible (where the communication is counted as the
entropy of the messages), one should use a distribution over deterministic protocols that
have a large violation per entropy ratio. In particular, the deterministic protocol having
the largest ratio gives a lower bound on the entropic communication complexity of p.

Theorem 6. Let B be a linear functional over the set of tasks, which defines a Bell
inequality B(pλ) ≤ B0 satisfied for all λ ∈ Λ0, but violated by a simulation task
p, that is, B(p) > B0. Then, the entropic communication complexity of p is lower
bounded as follows:

CD
H (p) ≥ B(p) − B0

B(pλ∗) − B0
CD

H (Pλ∗),

where Pλ∗ is a deterministic protocol for a task pλ∗ such that

B(pλ∗) − B0

CD
H (Pλ∗)

= max
λ/∈Λ0

B(pλ) − B0

CD
H (Pλ)

.

This may be proved along the lines of the proof of Proposition 1 in [19], which gives a
similar statement for the average communication complexity. We may now completely
determine the entropic communication complexity of pμ:

Theorem 7. For any 1/2 ≤ μ ≤ 1 we have, CH(pμ) = 2μ − 1.

Note that for 0 ≤ μ ≤ 1/2, we trivially have CH(pμ) = 0.

Proof. The lower bound comes from the previous theorem. This is then shown to be
tight by giving an explicit protocol. Since we have shown in Claim 1 that CH(pμ) =
CU

H(pμ), it suffices to consider the uniform input distribution.

[CU
H(pμ) ≥ 2μ − 1]. We use the CHSH inequality [4], which is defined by a linear

functional B acting on a task p as:

B(p) =
∑

x,y,a,b

ab (−1)x·yp(a, b||x, y).

It is straightforward to check that B(p) ≤ 2 for all p in LHV, so we set B0 = 2. For
the simulation task pμ, we have B(pμ) = 4μ, so that the inequality is violated as soon
as μ > 1/2. Moreover, maxPλ

(B(pλ) − B0)/CU
H(Pλ) is attained by a protocol Pλ∗

where one player sends his input to the other, such that CU
H(Pλ∗) = 1 and B(pλ∗) = 4.

We then obtain

CU
H(pμ) ≥ 4μ − 2

4 − 2
1 = 2μ − 1.
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[CU
H(pμ) ≤ 2μ − 1]. Let us consider the extreme cases μ = 1/2 and μ = 1. For

μ = 1/2, there exists a shared randomness protocol P1/2 without any communication
(p1/2 is in LHV), therefore satisfying CU

H(P1/2) = 0. On the other hand, for μ =
1, there exists a protocol P1 with one bit of communication (one of the player sends
his input to the other), that is, CU

H(P1) = 1. It is also straightforward to show that
pμ = (2 − 2μ)p1/2 + (2μ − 1)p1, so that for implementing pμ, it suffices to use the
protocol P1/2 with probability (2 − 2μ) and the protocol P1 with probability (2μ− 1).
By linearity, the obtained protocol has entropic cost 2μ − 1.

Using a reduction from p1/
√

2 to pdim=d, Theorem 7 implies as a corollary a lower
bound on the entropic complexity of pdim=d.

Claim 4. Let C∗ be any of C, C∞, CH . Then, C∗(pdim=d) ≥ C∗(p1/
√

2) for any
d ≥ 2.

Proof. The key observation is that the task p1/
√

2 for uniformly distributed inputs is

equivalent to the task pdim=d for a special distribution D̃, where the inputs are uniform
over two vectors {x0, x1} for Alice and two vectors {y0, y1} for Bob, laid out such
that xi · yj = (−1)i·j/

√
2. We then have C∗(pdim=d) ≥ CD̃

∗ (pdim=d) = CU
∗ (p1/

√
2),

which concludes the proof since we have shown that CU
∗ (pμ) = C∗(pμ).

Corollary 8. CH(pdim=d) ≥
√

2 − 1 ≈ 0.414 bits.

This lower bound means that for parallel repetitions of the problem, if we simply com-
press the messages using Shannon’s source coding theorem, we may not reduce the
communication further than 0.414 bits. We show in the next section that we can beat
this lower bound by using another technique, based on the reverse Shannon theorem.

4 A New Protocol

In this section, we show how to reduce the communication for parallel repetitions of the
problem of simulating pdim=d, beating the lower bound on the entropic communication
complexity derived in the previous section. We use a result due to Degorre et al., which
shows that the problem reduces to a distributed sampling task:

Theorem 9 ([20,13]). Let x and y be Alice’s and Bob’s inputs. If Alice and Bob share
a random variable v ∈ Sd−1 distributed according to a probability measure

ρ(v||x) =
|x · v|
Rd

,

where Rd =
∫

Sd−1
|x ·v| dv, then they are able to simulate pdim=d without any further

resource.

This observation leads to an apparently very bad communication protocol for pdim=d

with private randomness only: using her input and private randomness, Alice locally
samples v according to the distribution ρ(v||x), and then communicates v to Bob. This
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would require infinite communication, but the point is that the information cost of this
protocol would actually be not only finite, but also rather low, so that for parallel rep-
etitions of the problem, and with the help of shared randomness, we may significantly
reduce the communication using the reverse Shannon theorem. In particular, we prove
the following upper bound:

Theorem 10. The amortized communication complexity of pdim=d satisfies

C∞(pdim=d) ≤
⎧
⎨

⎩

1
ln 2

[
ln (d−1)Ad

Ad−1
− ∑ d

2−1

k=0
1

2k+1

]
for d even,

1
ln 2

[
ln (d−1)Ad

2Ad−1
− ∑ d−1

2
k=1

1
2k

]
for d odd,

(4)

where Ad =
∫

Sd−1
dv is the surface area of the d-dimensional sphere.

In particular, we have

1. C∞(pdim=2) ≤ 1
ln 2 (ln π − 1) ≈ 0.21 bits,

2. C∞(pdim=3) ≤ 1 − 1
2 ln 2 ≈ 0.28 bits,

3. C∞(pdim=d) ≤ 1
2 ln 2 (ln π − γ) ≈ 0.410 bits for arbitrary d, where γ is the Euler-

Mascheroni constant.

Proof. Let P be the following private randomness protocol for pdim=d: using her input
together with private randomness, Alice samples a random variable V according to the
distribution ρ(v||x) defined above and communicates the obtained sample v to Bob.
By Theorem 9, they are then able to solve task pdim=d. More precisely, it suffices for
the players to set their respective outputs as a = sgn(x · v) and b = sgn(y · v), where
sgn(x) = 1 if x ≥ 0, and −1 otherwise [20,13].

We have shown in the previous section that the reverse Shannon theorem implies that
CD

∞(pdim=d) ≤ CD
I (pdim=d) (Proposition 5) and also that the hardest distribution for

pdim=d has uniform marginals (Claim 2), so it suffices to compute the information cost
CD

I (P ) = I(X : V ) for a distribution D with uniformly distributed x. The computation
of I(X : V ) will be given in the full version of the paper, and yields Eq. (4).

For completeness, let us note that using the same technique, we can prove the following
upper bound on the amortized communication complexity of pμ:

Theorem 11. For any 1/2 ≤ μ ≤ 1, we have C∞(pμ) ≤ 1 − H [μ], where H [μ] =
μ log 1

μ + (1 − μ) log 1
1−μ .

Proof. Let v be a random bit correlated with x, such that p(x = v) = μ. The channel
defined by the Markov process X → V is then a binary symmetric channel, with chan-
nel capacity 1−H [μ]. It is straightforward to show that if Alice may use such a channel
to communicate information about her input x to Bob, it is sufficient to simulate pμ.
Indeed, it suffices for Alice and Bob to output

a = (−1)(x⊕v⊕1)·λ0 (−1)(x⊕v)·λ1 ,

b = (−1)λ0 (−1)y·v,

where λ0, λ1 are shared unbiased random bits. The reverse Shannon theorem then en-
sures that asymptotically, the channel X → V may be simulated using on average
1 − H [μ] bits per repetition.
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In the next section, we will show that this protocol is optimal, at least when the players
are restricted to one-way communication.

5 The Difference Method

Amortized lower bounds are notoriously hard to prove. Examples include the Shannon
capacity of graphs [21] and the parallel repetition theorem of Raz [22]. In some lucky
cases the situation is better. Quantum values of XOR games [23] and the communication
complexity of correlation [2] are examples, where mathematics seems to be in our favor.
Incidentally, both topics have relevance to lower bounding amortized communication
complexity. We develop a new method we call the difference method, which so far
we could apply only in the one-way communication context. Note, however, that all
efficient protocols we know for this problem are one-way.

Theorem 12. For any 1/2 ≤ μ ≤ 1, we have C→∞ (pμ) ≥ 1 − H [μ].

This matches the upper bound of Theorem 11, showing that the above protocol is opti-
mal, at least for one-way communication.

Proof. Since the hardest distribution is the uniform distribution U (Claim 1), we
have C→∞ (pμ) = C→,U∞ (pμ). Moreover, Proposition 5 implies that C→,U∞ (pμ) =
C→,U

I (pμ), so it suffices to show that for any protocol for pμ, I(X : M) ≥ 1 − H [μ],
where x is an unbiased random bit. The idea of the proof is to reduce the problem to
the communication complexity problem of a correlation à la Harsha et al. [2] and then,
following their approach, use the mutual information between Alice’s input and Bob’s
output to bound the communication. To reduce to [2], 1. We have to get rid of Bob’s
input; 2. We have to get rid of Alice’s output. If we fix Bob’s input and omit Alice’s
output, we get nothing. Nevertheless, since the communication is one-way, when Bob
receives Alice’s message, he can just compute the output on any input he wants to. We
show that if we run the protocol with a random input x on Alice’s side, take both y = 0
and y′ = 1 as inputs on Bob’s side, and receive outputs b and b′, respectively from Bob,
then the product b · b′ will contain a lot of information about Alice’s input, x.

Observe that (a · b) · (a · b′) = b · b′. The specification of pμ tells us that a · b should
take 1 with probability (1+μ)/2 and −1 with probability (1−μ)/2. Also, a · b′ should
take (−1)x with probability (1 + μ)/2 and (−1)x+1 with probability (1 − μ)/2. The
union bound gives that the probability that b · b′ = (−1)x is at least μ. This shows
that the mutual information I(X : E) between x and e = b · b′ is at least 1 − H [μ],
where we have used the fact that H(X) = 1 (since X is an unbiased random bit).
The data processing inequality on the Markov chain X → M → E then implies that
I(X : M) ≥ I(X : E).

For μ = 1/
√

2, we have C→∞ (p1/
√

2) ≥ 1 − H [1/
√

2], and in turn, using the reduction
from Claim 4, we obtain the following lower bound on C→∞ (pdim=d) as a corollary:

Corollary 13. C→∞ (pdim=d) ≥ 1 − H [1/
√

2] ≈ 0.13 bits for any d ≥ 2.
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