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Abstract

Environmental managers must decide how to invest available resources. Researchers

have previously determined how to allocate conservation resources among regions,

design nature reserves, allocate funding to species conservation programs, design

biodiversity surveys and monitoring programs, manage species and invest in greenhouse

gas mitigation schemes. However, these issues have not been addressed with a unified

theory. Furthermore, uncertainty is prevalent in environmental management, and needs

to be considered to manage risks. We present a theory for optimal environmental

management, synthesizing previous approaches to the topic and incorporating

uncertainty. We show that the theory solves a diverse range of important problems of

resource allocation, including distributing conservation resources among the world’s

biodiversity hotspots; surveillance to detect the highly pathogenic avian influenza H5N1

virus in Thailand; and choosing survey methods for the insect order Hemiptera.

Environmental management decisions are similar to decisions about financial

investments, with trade-offs between risk and reward.
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I N T R O D U C T I O N

Global environmental problems include loss of biodiversity,

emerging infectious diseases and climate change. There are

insufficient resources to eliminate completely this broad

range of environmental problems, and hence it is necessary

to prioritize (Possingham et al. 2001; Brooks et al. 2006).

Recent developments have moved from ground-breaking

work that ranks threats (Mace & Lande 1991; Myers et al.

2000) to determining efficient strategies for reducing threats.

Decision theory provides the tools to identify these efficient

strategies. Fundamental aspects of decision theory include

an objective function that defines the goal of management,

and a method to determine the combination of management

strategies that optimizes the objective function (Possingham

et al. 2001).

Examples of decision theory in conservation include

allocating conservation resources among regions (McCarthy

et al. 2006; Wilson et al. 2006; Murdoch et al. 2007; Bode et al.

2008), designing nature reserves (Possingham et al. 2000;

Moore et al. 2004; McCarthy et al. 2005), allocating funding to

species conservation programs (McCarthy et al. 2008; Joseph

et al. 2009), designing biodiversity surveys and monitoring

programs (Bar-Shalom & Cohen 1976; Moir et al. 2005;
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Hauser & McCarthy 2009), managing threatened, migratory

or invasive species (Baxter et al. 2006; Martin et al. 2007) and

investing in greenhouse gas mitigation schemes (Springer

2003). These problems have a common structure that seeks to

optimize an outcome subject to constraints. Furthermore,

uncertainty is prevalent in environmental management, and

needs to be considered to manage risks (e.g., Polasky et al.

2000; Burgman 2005; Drechsler 2005; Halpern et al. 2006).

Ignoring uncertainty is risky, can lead to over-confidence

in the chosen management strategy, and exposes managers to

unexpected failure (Burgman 2005).

This article has two major aims: to show (1) how a

simplified version of conservation problems can be usefully

applied to a broad range of examples, and (2) that the

particular structure of this simplification allows these

approaches to incorporate uncertainty about the state of

the world and the response to management. We illustrate

the breadth of the approach using three very different case

studies: (1) allocation of resources among biodiversity

hotspots, (2) surveillance of avian influenza in Thailand

and (3) choice of methods for surveying insect biodiversity.

This provides a theory to help guide environmental

management in the face of uncertainty.

M E T H O D S

Models

Environmental management can be characterized by con-

sidering a manager who must decide how to allocate finite

resources among a set of options to best achieve an

objective. For example, a manager of an endangered species

might need to decide how to allocate effort among options

such as habitat protection, habitat restoration, captive

breeding and control of predators and disease. Mathemat-

ically, this can be expressed as a manager seeking to

optimize the function L = f (x1, x2, …, xn) by choosing the

values of xi, the amount invested in each of the n options,

subject to a budget constraint (
Pn

i¼1 xi ¼ B). The function

f ( ) defines how the expenditures on the options (the xis)

combine to influence the management outcome L. For

example, in reserve design, a manager might wish to

maximize the amount of biodiversity protected by allocating

a finite budget to reservation of land, subject to the costs of

management and other constraints (Possingham et al. 2000).

A range of nonlinear optimization methods are available

to solve problems of this form (e.g., Nocedal & Wright

1999; Boyd & Vandenberghe 2004). However, we propose

that this general form for L can be approximated usefully by

the simplified function

L ¼
Xn

i¼1

piðxiÞ ð1Þ

in which returns on investment in each of the n management

options are assumed to be additive. The outcome of option i

( pi(xi)) is the reward function when aiming for large values

of L. Naming pi(xi) the penalty function might be more apt

when seeking small values of L, but we use the term reward

function in all cases for simplicity. As examples, the reward

functions might be the probability of species persistence

(L is the expected number of species persisting; McCarthy

et al. 2008) or the probability of sites containing an unde-

tected invasive species (L is the expected number of such

sites; Hauser & McCarthy 2009). Here, we show that the

approximation (eqn 1) helps to highlight a common struc-

ture of environmental management problems, and provides

a natural mechanism for incorporating uncertainty into

decision-making.

The management outcome L (eqn 1) can be optimized

subject to the budget constraint
Pn

i¼1 xi ¼ B using

Lagrange optimization (Sundaram 1996; see Supporting

Information). Regardless of the form of the reward

functions, the optimal solution is to invest in the options

for which the marginal benefits are large, and invest to a

level in each such that the marginal benefits are equal. For

example, the simplest function for pi(xi) has linear changes

in the outcome for each management option pi(xi) =

pi + bi xi. This might be suitable when changes in

management outcomes are sufficiently small that dimin-

ishing management returns do not occur. In this case, the

strategy to optimize the expected outcome is to invest in

the single option where the marginal benefit is greatest

(Cannon 2009). If the amount of resources that can be

invested in each option is limited ðx�i � xmax
i Þ, then it is

equivalent to the Project Prioritization Protocol of Joseph

et al. (2009).

Hauser & McCarthy (2009) provide analytical solutions

for the optimal investment in each option when the reward

functions are exponential piðxiÞ ¼ pie
�bi xi (see also the

Supporting Information). Another alternative is to assume a

hyperbolic function piðxiÞ ¼ pið1þ ui xiÞ�hi , which has

proportionally smaller improvements in pi(xi) as more

money is invested compared with the exponential form.

Being a power function, the hyperbolic model also applies

to cases where benefits of conservation reserves accrue

according to a species–area relationship (e.g., as used by

Murdoch et al. 2007). When the different options have a

common value for hi = h, the expected outcome is

optimized when the level of investment in option i is:

x�i ¼ ðB=nþ 1=huÞmi=m� 1=ui ; provided x�i > 0;

and x�i ¼ 0 otherwise;
ð2Þ

where vi = (ui pi)
1 ⁄ (h+1) ⁄ bi, m is the arithmetic mean of vi,

and hu is the harmonic mean of ui. Results must be ob-

tained numerically when hi are not equal.
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Incorporating uncertainty

In the above formulation of the problem, we optimized

L ¼
Pn

i¼1 PiðxiÞ. This ignores uncertainty in the possible

outcomes that may arise, for example, due to uncertainty in

the parameter values that define the functions pi(xi). Financial

investments have recognized the importance of uncertainty

for several decades (Markowitz 1952, 1991), and there are

parallels with investment in environmental strategies (Spring-

er 2003; Edwards et al. 2004). Optimizing the expected return

without regard to uncertainty in the reward functions pi(xi) is a

risky strategy in environmental management, just as it is in

finance (Markowitz 1952, 1991). Instead, we might wish to

maximize the probability that L achieves a minimally

acceptable outcome T (satisficing; Simon 1982) or use some

other method for dealing with uncertainty such as worst-case

analysis or minimizing regrets (French 1986).

Uncertainty in the outcome of each management option

can be considered by treating each pi(xi) as a random

variable. The overall management outcome L is then

simply the sum of n random variables, the mean and

variance of which is well known (Ross 2009; see

Supporting Information). The probability distribution for

L will depend on the probability distribution of pi(xi).

As the number of options n increases, the distribution of L

will approach a Gaussian (normal) due to the central limit

theorem, which simplifies how to determine the strategy

that maximizes the probability of achieving a minimally

acceptable outcome T. When the number of strategies is

not sufficiently large to justify a normal assumption, the

distribution of L can be calculated explicitly (i.e., by the

convolution of multiple random variates) or by using some

other assumption (e.g., that the sum of lognormal

distributions is approximately lognormal; Fenton 1960).

Once the probability distribution of L is determined, one

can optimize the probability that L achieves at least the

minimally acceptable outcome T.

There is a simple solution when outcomes among all

management options are linear and uncorrelated, and a

normal distribution for L for can be assumed (see

Supporting Information) as in the hotspots example below.

In this case, the probability of exceeding a minimally

acceptable outcome T is maximized by allocating to option i

in proportion to y�i ¼ ðli � T =BÞ=r2
i , (provided y�i > 0)

where B is the available budget, li is the expected value of bi

(the efficiency of investment in option i ), and ri = �V(bi),

the standard deviation of bi. Thus, we should invest in all

options for which the expected efficiency is at least

minimally acceptable (li > T ⁄ B ). In this case, options

receive more funding as the expected outcome li increases,

and as the outcome becomes more certain (ri decreases).

In the linear case, greater uncertainty relative to the expected

benefits of an option leads to greater spreading of resources

among the other options. Correlations between manage-

ment options modify this optimal allocation (see Supporting

Information).

C A S E S T U D I E S

We applied our theory to three case studies that can be

characterized by the three different reward functions. These

case studies required allocation of: (1) conservation

resources among the world’s biodiversity hotspots (linear

model), (2) surveillance effort to detect a strain of the highly

pathogenic avian influenza (HPAI) H5N1 virus in Thailand

(exponential model) and (3) effort among methods in a

biodiversity survey (hyperbolic model).

Biodiversity hotspots

Biodiversity hotspots support many endemic species but

face high levels of threat (Myers et al. 2000). We examined

how best to allocate an annual budget of US$310 million

over 20 years to conserve endemic plant species in 34 of the

world’s hotspots. Allocating finite conservation resources

among biodiversity hotspots can minimize the expected

number of endemic plant species becoming extinct (Bode

et al. 2008). We replicate the study of Bode et al. (2008) and

then extend it to account for uncertainty. In addition to

threat (a function of the level of protection and the rate of

vegetation clearance) and endemism, the cost of acquiring

land is a key variable driving the optimal allocation of

resources among areas (Ando et al. 1998; Wilson et al. 2006;

Bode et al. 2008). The model accounts for the number

of endemic species Si in region i, which accumulates with

area Ai according to Si ¼ kiA
z
i , with z = 0.18 (Bode et al.

2008). It also accounts for the area of land ai that is already

reserved in region i, the area of unreserved land ui, the

per-unit-area cost of land ci, the expenditure xi in each

region, and the proportion di of the unreserved land that is

cleared each year. In this case, the predicted number of

species saved from extinction by land acquisition is

approximately xizjidi(ai + ui(1 – di))
z)1 ⁄ ci (see Supporting

Information). This becomes a simple optimization when the

objective is to minimize the loss of species because the

number of species in a region saved from extinction

is approximately linear with respect to expenditure (xi) in

that region. To minimize the expected loss of species,

land is bought in the region with the greatest value of

zjidi(ai + ui(1 – di))
z)1 ⁄ ci subject to the annual budget

constraint and the amount of uncleared land that is

available.

The above optimization requires parameter values for z ,

ci, ai, ui, di and ji. Estimates for z , ci, ai, ui and di, which are

the species-area exponent, land costs, and information on

land clearing and reservation are likely to be reliable, and
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were obtained from Bode et al. (2008). However, the

number of species that are likely to be saved for a

particular area of reserved land is uncertain for several

reasons. For many taxonomic groups, such as invertebrates,

the relative number of endemic species in a region (ji) will

be poorly estimated. For many species, their distribution

within areas bought for conservation reserves will be

unknown. Additionally, the long term persistence of species

(i.e., the effectiveness of the reserve system) is also

uncertain. These sources of uncertainty can be modelled

by treating the term ji as a random variable with mean ki,

so the number of species saved per unit of expenditure has

mean E(bi) = kizdi(ai + ui (1 – di))
z)1 ⁄ ci. We assumed that

the coefficient of variation in the term ji is the same in all

regions (V(bi) = k(kizdi(ai + ui(1 – di))
z)1 ⁄ ci)2; i.e., the

uncertainty is proportionally equal, given by k), that ji is

normally distributed, and that the estimated number of

species in a reserve is an unbiased estimate of the number

that will persist. We then determined the strategy that will

save at least T endemic plant species per year from

extinction.

In the case study, we determined the optimal allocation of

the annual US$310 million budget in each of 20 years (from

Bode et al. 2008), with the amount of reserved land (ai)

increasing annually with previous investment, and the

amount of available land (ui) decreasing annually as

unreserved land is cleared or purchased. Results were

expressed in terms of the total investment in each hotspot

over the 20 years.

The expected number of endemic plant species saved

from extinction is maximized by spending money in only

8 of the 34 hotspots because investments in other regions

are expected to be less efficient (Fig. 1). These results are

equivalent to those obtained in the original study (Bode et al.

2008), with resources allocated to single regions for several

years until the available land is bought. For example, the

Tropical Andes receives the entire annual budget for 10

consecutive years.

The results are very different from the original study

(Bode et al. 2008) when uncertainty is considered. Rather

than investing the annual budget until all suitable land in a

hotspot is bought, a more uniform distribution of resources

among regions occurs when the aim is to maximize the

probability of saving at least T plant species per year (for

T £ 3, Fig. 1). Some regions that did not receive any

funding when minimizing the expected number of extinc-

tions received funds under this risk-averse strategy. With a

very modest goal of at least some positive outcome, it is

optimal to invest in more hotspots, with 13 receiving >1%

each of the total funds. This bet hedging helps buffer the

investment against an unexpectedly poor outcome in one

hotspot by a greater chance of an unexpectedly good

outcome in another.

H5N1 surveillance

A strain of HPAI H5N1 virus emerged in Asia in the mid

1990s. Thailand and other countries in southeast Asia

experienced numerous epidemic waves of HPAI H5N1 in

2004, 2005 and 2006, causing high social and economic

impact. Although relatively rare compared with the epidemic

in poultry, human infections by HPAI H5N1 have

frequently been fatal. A great concern is that a mutation

of this virus to permit efficient human-to-human transmis-

sion may lead to a pandemic of unknown magnitude.

Preventing virus circulation in poultry addresses simulta-

neously the pandemic risk and the actual socio-economic

impact of bird flu on the poultry industry and smallholders’

livelihoods. A program of surveillance and control has

substantially reduced the incidence of the virus in Thailand

(Tiensin et al. 2007; Food and Agricultural Organization

2007). One aspect of surveillance and control measures is

random sampling and testing of domestic poultry for H5N1

(viral sampling).

The risk of outbreaks of HPAI H5N1 is positively

correlated in southeast Asia with the intensity of rice

production, human population size and the abundance of

ducks (Gilbert et al. 2008). We use this previously published

map of the risk of HPAI H5N1 infection in Thai poultry
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Figure 1 The optimal allocation of resources over a 20-year period

to the world’s biodiversity hotspots when minimizing the expected

number of extinct endemic plants species [Min E(L)], or when

maximizing the probability of saving at least T endemic plant

species per year. Results are only shown for hotspots receiving

> 1% of the total funding. The Coastal Forests of East Africa

receive 0.6–0.7% of funds in all cases. Maputaland-Pondoland-

Albany, Philippines and Tumbes-Chocó-Magdalena should receive

some funding (< 1%) when saving at least one endemic plant

species per year (T = 1).
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flocks to represent the probability of an outbreak being

present in a sub-district and remaining undetected in the

absence of any viral sampling. We then sought a viral

sampling protocol that minimizes the number of sub-

districts with undetected outbreaks.

Our objective function was the expected number of sub-

districts with undetected outbreaks of the virus,

L ¼
P

pi expð�bixiÞ ¼
P

piq
xi

i , which we aimed to

minimize, subject to a budget B of 100 000 sampled flocks

(Tiensin et al. 2005). The parameter qi is the probability of

failing to detect the virus when a single flock is sampled in

sub-district i where H5N1 is present, pi is the probability of

H5N1 being present in the sub-district (Gilbert et al. 2008),

and xi is the number flocks sampled. This model essentially

assumes that H5N1 occurs randomly in flocks within sub-

districts where the virus is present. In the absence of

knowledge about how prevalence of the virus in asymp-

tomatic populations might vary among sub-districts, it is

reasonable to assume that qi is similar for all, in which case

the optimal allocation (eqn 1) to minimize the expected

value of L reduces to x�i ¼ B=nþ ð yi � yÞ=b, where

yi = lnpi and b = )lnq.

The parameter q was estimated to be 0.996 (b = 0.004)

using data on the proportion of flocks that were infected in

2004 within each sub-district (888 out of 7410 sub-districts)

where H5N1 was present (Tiensin et al. 2007; see Support-

ing Information). Variation in q was well represented by a

beta distribution (Fig. 2). This low level of prevalence

reflects that only a single flock was infected in most sub-

districts where H5N1 was found present. The mean and

variance of the probability of the virus being present in a

sub-district but remaining undetected when sampling x

flocks can be determined (see Supporting Information).

The performance of the surveillance system was assessed by

predicting the number of sub-districts and districts in which

H5N1 was present but the virus would have remained

undetected during waves I, II and III in Thailand in 2004

and 2005 (see Supporting Information).

Surveillance should occur in sub-districts where the

relative risk of HPAI H5N1 is greater than c. 0.56 to

minimize the expected number of undetected outbreaks.

In this case, up to 146 flocks are sampled in the highest risk

sub-districts (Figs 3 and 4), which is predicted to reduce the

expected number of undetected outbreaks by c. 10% below

the level that would be expected without surveillance. This

threshold occurs because the surveillance budget is not

sufficiently large that the probability of occurrence of HPAI

H5N1 in the higher risk sub-districts is reduced below this

threshold by the viral sampling. If this optimal surveillance

effort had applied during 2004 and 2005, the proportion of

sub-districts with undetected outbreaks would have been

reduced by 9, 18 and 15% in waves I, II and III respectively.

These values compare with an expected reduction of 5%

if surveillance effort were distributed equally across sub-

districts. The proportion of infected districts (larger geo-

graphic areas than sub-districts) without detected outbreaks

would have been reduced by 33, 49 and 71%. The relatively

modest reduction in undetected outbreaks emphasizes the

importance of passive surveillance (e.g., public awareness and

participation) that is occurring in Thailand.

When considering uncertainty, the solution that maxi-

mizes the probability of reducing the number of outbreaks

by at least 10% is almost identical to that obtained when

minimizing the expected number of undetected outbreaks

(result not shown). In contrast, a more even distribution of

effort is optimal with a lower aspiration of reducing the

number of outbreaks by at least 5% (Fig. 4). The solution

based on a linear approximation of the reward functions

provides a similar solution in this case.

Survey methods for Hemiptera

Invertebrates constitute a very large proportion of the

world’s biodiversity and have diverse functions in ecosys-

tems (Gaston 1991; Moir et al. 2005). However, most groups

of invertebrates are poorly known to science, with only a

small fraction of species described. Designing efficient

biodiversity surveys is important to be able to detect the

range of species present in an area with the available

resources. In this case study, we determine the most

efficient use of different methods for collecting Hemiptera,

one of the most speciose orders of insects (Gaston 1991).

Its members are important herbivores and prey, and can be

useful surrogates for the diversity of other taxonomic
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Figure 2 The probability that H5N1 highly pathogenic avian

influenza was absent from a flock when present in a sub-district

of Thailand during 2004 based on data in Tiensin et al. (2007).

The black line is the observed frequency distribution of the

proportion for the data (number of flocks free of H5N1 as a

proportion of the number of flocks in the sub-district), and the

grey line is the fitted beta distribution with parameters (a = 510

and b = 2).

1284 M. A. McCarthy et al. Letter

� 2010 Blackwell Publishing Ltd/CNRS



groups (Moir et al. 2005). We determined the allocation of

resources between five methods for sampling insects that

would maximize the number of hemipteran species col-

lected in south-west Australia (Moir et al. 2005), a global

biodiversity hotspot.

We used an additive model with hyperbolic reward

functions to approximate the number of species that remain

undetected when the time spent using survey method j at

each site is xj. In this case, the number of species that

remain undetected, which is given by (see Supporting

Information)

L ¼
Xs

i¼1

Yn

j¼1

e�bi; j xj ; ð3Þ

can be approximated by

L ¼
Xn

j¼1

sj

ð1þ uj xjÞhj
; ð4Þ

where sj is the number of species that are only collected

using method j, and uj and hj depend on the mean and

variance of the detection rates bi, j. Equation 4 is the

hyperbolic model, providing an analytical solution (eqn 2)

that will approximately minimize eqn 3.

The data used here were a subset of those presented in

the original paper (Moir et al. 2005), with methods applied

only at the site level considered, i.e., methods: (1)

vacuuming, (2) beating of vegetation, (3) sweeping, (4)

sticky traps and (5) hand collection. Values of uj and hj were

estimated by fitting the hyperbolic function (4) using least

squares to the observed detection function. An excellent fit
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Figure 3 Optimal number of poultry flocks to sample for highly pathogenic avian influenza (HPAI) H5N1 in each sub-district of Thailand,

reflecting the relative risk of outbreaks as a function of the density of humans, ducks and rice paddies (Gilbert et al. 2008).
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Figure 4 Optimal number of flocks to survey in each sub-district

vs. the relative risk of H5N1 outbreak given in Gilbert et al. (2008).

Curve (a) is obtained when the objective is to minimize the expected

number of sub-districts with undetected outbreaks ignoring

uncertainty in the detection rate (mapped in Fig. 3). This result is

almost identical to those when uncertainty in the detection rate is

included, and when the objective is to maximize the probability of

reducing the number of sub-districts with undetected outbreaks by

at least 10% (not shown). This is compared with the objective of

maximizing the probability of reducing the number of sub-districts

with undetected outbreaks by at least 5% (b), and a solution

obtained using a linear approximation with this objective (c).
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(Fig. 5) was obtained when assuming that hj was the same

for all methods (h = 0.725; see also Supporting Informa-

tion). The parameters uj were estimated as 0.00335 for

method 1 (vacuuming), 0.0105 for method 2 (beating),

0.0099 for method 3 (sweeping), and 0.0052 for method

4 (sticky traps). No species were solely collected using method

5 (hand collection).

With the estimated parameter values and for a budget of

B = 10 h, the number of undetected species L is minimized

when x1 = 7.1 h, x2 = 2.3 h, x3 = 0.6 h, x4 = 0 h and

x5 = 0 h, based on the analytical approximation (4). This

result is similar to that obtained by numerically minimizing

eqn 3, which gives the exact solution x1 = 5.6 h,

x2 = 3.0 h, x3 = 0.6 h, x4 = 0.4 h and x5 = 0.4 h. The

outcome of numerical minimization is almost identical to

that obtained analytically via the approximation; 47–49% of

species (57–59% of those species detected using a single

method) were expected to remain undetected with a budget

of 10 h. We used a budget of B = 10 h for illustrative

purposes. A small amount of sweeping is used in this case

because the effort spent on vacuuming and beating is

sufficiently large that the marginal efficiencies for these

methods are reduced to a point where sweeping is equally

efficient. Larger budgets (e.g., B = 50 h) would lead to

sticky traps being employed also.

When accounting for uncertainty in the efficiency of

collection (represented by the standard error bars in Fig. 5),

the distribution of effort would be slightly more even if we

were content to sample fewer than the expected number of

species. For example, if the minimally acceptable number of

undetected species (T ) is 25% more than the number

expected, then the allocation that maximizes the probability

of achieving this outcome is x1 = 7.0 h, x2 = 2.4 h,

x3 = 0.6 h, x4 = 0 h and x5 = 0 h. In this case, the

allocation is similar regardless of the value of T, suggesting

that the option that minimizes the expected number of

undetected species is relatively robust to uncertainty in the

efficiency of collection. Our results agree with the judge-

ment in the original paper (Moir et al. 2005) that beating

and vacuuming were the best complementary selection of

survey methods. Our approach provides an objective basis

for this judgement, and also determines the relative effort

for each method.

D I S C U S S I O N

This article makes two important advances. It shows that

the question about how to allocate resources among options

can often be approximated with a common mathematical

structure for a range of environmental management

problems; in the examples shown here, the benefits of

management are additive or can be approximated as such.

Note that multiplicative functions can be converted to an

additive form (see Supporting Information). In addition to

the examples shown here, additive management options

apply to mitigating greenhouse gas emissions (Springer

2003), species management (Baxter et al. 2006), and, in

particular cases, reserve design (Possingham et al. 2000;

McCarthy et al. 2005). If ignoring uncertainty, the expected

outcome is maximized by investing in options that have

high expected returns, and to a level such that the marginal

efficiency is equal.

The second advance is showing that uncertainty can be

considered relatively easily because the mean and variance of

the management outcome can be calculated from the means,

variances and covariances of the management options.

The additive benefits of management options simplify

approaches to accounting for uncertainty because the

probability distribution of the sum of random variables is

relatively easy to calculate, particularly for a small number of

options. When the number of options is large, the sum may

be well approximated by a normal distribution, the mean

and variance of which can be calculated.

Outcomes of investment in environmental management

are not always additive, as we assumed in eqn 1. For

example, if L were the population growth rate of a species
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Figure 5 Expected number of species remaining undetected vs.

the time spent surveying, sorting and identifying specimens for

four different survey methods (vacuuming, beating of vegetation,

use of sticky traps and sweeping). Dots and standard error bars

represent the empirical detection data (Moir et al. 2005), and the

lines are the fitted hyperbolic functions. These data are for species

that were detected with only a single method.
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as a function of the amount of money spent in different

management options, the efficiency of each management

option may depend on investments in other options; the

benefits of reintroduction may depend on the control of

exotic predators or the management of suitable breeding

sites. Such interactions between options appeared in the

Hemiptera example, with some species detected by

multiple methods. This is mathematically equivalent to

the issue of complementarity in reserve design (Possing-

ham et al. 2000); the most important sites do not

necessarily contain the most species. However, approaches

that seek to select sites with many species that are found in

few other places (i.e., concentrating on endemics as in the

hotspots case study) may provide a useful heuristic. This

approach is equivalent to restricting the Hemiptera analysis

to species that are found with a single survey method.

By doing this, the problem can be approximated by the

additive function (eqn 1). Nevertheless, further extension

of our approach to include interactions among options

seems worthwhile.

The linear version of this problem is analogous to

Markowitz’s portfolio theory (Markowitz 1952, 1991), in

which the investment decision involves a trade-off between

the mean (expected) outcome and the uncertainty (variance)

of the outcome, depending on the means, variances and

covariances of the returns on individual assets. This linear

version of the problem has been applied previously in

environmental management (Springer 2003; Edwards et al.

2004). While the linear version is important and was the

basis of Nobel-prize-winning research in economics, the

prevalence of nonlinear responses in environmental man-

agement problems makes our novel solutions in these cases

particularly important. One of the important outcomes of

this article is to show that the same ideas of trading risk and

reward can be applied in nonlinear problems, which are

common in environmental management.

While linear relationships between investment and

management outcomes are likely to be uncommon in

environmental management, the linear form provides a

useful approximation (Fig. 4), and has been used previously

(Springer 2003; Edwards et al. 2004). Even in our hotspot

example where the relationships are nonlinear due to the

species–area effect, a linear approximation gives identical

results because the level of investment is not sufficiently

large, and the difference in costs among regions has the

greatest influence on the results.

A benefit of using the linear form when possible is that

analytical solutions are available, simplifying the calculations,

and clarifying the basis of the solutions. In particular, when

responses to management are approximately linear, incor-

porating uncertainty leads to a more uniform spread of

investment among those options that are expected to

perform better than the minimally required rate. This bet

hedging is also seen in the case studies when the reward

functions are convex.

There are several advantages of using our formal

mathematical approach to allocating effort among manage-

ment options, rather than subjective judgement. Our

method demonstrates that the optimal solution depends

on the particular objective, emphasizing that this requires

careful thought and consideration by stakeholders. Our

approach also emphasizes the complexity of some of the

optimal management solutions. For example, the extent of

extra effort spent on H5N1 surveillance of higher risk sub-

districts depends on the objective, with some areas having

almost the greatest effort under one objective, but none

under another (e.g., consider when risk = 0.55 in Fig. 4).

The difference arises because the two objectives weight the

mean and variance of the outcome differently. Objectives

that emphasize maximizing the expected outcome compared

with minimizing the uncertainty of the outcome may have a

greater concentration of investments. This can be seen in

the solution of the linear version with the investment in

option i proportional to ðli � T =BÞ=r2
i . If values of

li ) T ⁄ B are all substantially > 0, the optimal investment in

each option will be similar. When some values of li ) T ⁄ B
are close to 0 compared with others, then investment will be

heavily weighted towards options with the larger values.

Such sensitivity of the results, and the explicit or implicit

weighting of the mean and variance, would be obscured if

using subjective judgement. Finally, subjective judgements

are prone to a range of human frailties (Tversky &

Kahneman 1974), making them unreliable as the sole basis

for environmental management decisions (Burgman 2005).

While our mathematical approach to managing risks may be

daunting to some, formal quantitative methods such as ours

help to overcome problems of subjective judgement

(Burgman 2005). These types of analyses are routine when

designing financial investment portfolios that account for

uncertainty; they should also be applied to investments for

environmental management that are subject to at least the

same level of uncertainty. We also note that these analyses

should be used to support, not make, decisions, permitting

investigation of different decisions.

By synthesizing previous efforts to optimize environmental

investments, and extending these to account for uncertainty,

our allocation theory can contribute to managing pressing

environmental problems. The three case studies highlight the

diversity of applications of our theory for environmental

management. More generally, the theory can be applied to a

range of instances in which management options provide

approximately additive or multiplicative benefits to the

environment. Further avenues for research include: (1)

dealing with interactions among options, where the benefit

ascribed to one management option depends on the perfor-

mance of other options, (2) transaction costs (Brennan 1975),
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such as costs of travel between sub-districts in surveillance

programs, for initiation of projects in biodiversity hotspots,

and establishment of new survey methods and (3) different

approaches to managing uncertainty.
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