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Abstract 
 
This work deals with the modeling and the direct numerical simulation of the 
absorption of a gas component into a spherical liquid droplet in free fall, where the 
absorbed component takes part to a chemical reaction. This study is realized by 
computing the flow fields and the concentration fields simultaneously in the gas 
and liquid phases. The time evolution of the droplet global mass absorption rate is 
studied for various regimes characterized by the Reynolds and the Hatta numbers. 
The monitoring of the time evolution of the concentration fields in the droplet 

enables the understanding of the interactions between the diffusive and convective 

mass transports and the chemical reaction. The phenomena controlling the mass 
transfer rate and how they evolve during the mass absorption process can then be 
identified. In a first stage, the case of the physical absorption is studied. Moreover, 
analytical expressions are developed to correlate the time evolution of the 
Sherwood number with the Reynolds number and the absorption time. In a second 
stage, the influence of the coupling with a chemical reaction is studied. It is 
observed that several rate-limiting mechanisms successively control the global 
absorption rate, enlightening the complex interactions between convective and 

diffusive mass transport and the chemical reaction. 
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1. Introduction 
 

The absorption of gas materials from flue gas by reactive liquid droplets is an 
important mass transfer process for several industrial applications, such as air 
pollution control. The presence of a chemical component in the liquid phase which 
reacts with the absorbed component enables a considerable enhancement of the 
mass transfer rate. One of the most studied case is the scrubbing of sulfur dioxide 
(SO2) by a limestone slurry in a counter current spray scrubber, used in order to 
reduce the emissions [1, 2, 3, 4]. A deep understanding of the phenomena taking 
place during the gas-droplet mass transfer coupled with chemical reaction is of 
fundamental interest for the design and the optimization of such industrial 
applications. 

A detailed modeling, based on a sound mathematical statement, is required to 
predict correctly the gas-droplet mass transfer rate and its evolution over time. 
This is a complex problem, as shown by the large number of mathematical models 
and experimental investigations that have been devoted to it. Indeed, the mass 
transfer rate is influenced by several phenomena and by their intricate couplings: 

the diffusive transport, the convective transport imposed by the flow fields in both 

phases, and the chemical reaction in the liquid phase. 
This complexity is probably one of the main reason explaining why many 

empirical and idealized models can be found in the literature. For instance, the 
expression for the Sherwood number derived by Frössling from a study of the 
evaporation of small water droplet (see [5]) was often used for gas absorption into 
a droplet. More recently, Brogren and Karlsson [1] have proposed a model for the 
flue gas desulfurization taking into account all the chemical reactions taking place 
in the liquid but using the Higbie penetration theory [6] for the mass transport. 

Nowadays, it is well known that for falling droplets having a Reynolds 
number (defined in section 2.2) higher than 10, the shear stress exerted by the gas 
phase induces a vortex in the droplet [7], which can have a significant influence on 
the mass transfer rate [8, 9, 10]. To compute the flow field in both phases and their 

influence on the mass transfer is one of the main modeling difficulty, which has 

been studied for decades. 



  

It is now commonly admitted that, for Reynolds numbers smaller than 1, the 
gas flow is creeping and the flow field in the droplet can be described by the 
analytical stream function of Hadamard and Rybczinski [7, 11]. For higher 
Reynolds numbers, between 1 and 80, the stream function determined by the 
approximate expressions of Hameliec and Johnson [12] can be used instead. 
Leclair et al. [7] presented a general theoretical framework to compute the flow 
fields inside and outside water droplets. One of the first works to compute the mass 
mass transfer rate with internal circulation was realized by Kronig and Brink [13] 
in the framework of extraction. The first incorporation of the flow fields computed 
using the model of Leclair et al. [7] into a model of gas absorption was realized by 
Baboolal et al. [14], as mentioned by Elperin and Fominykh [15]. The work of 
Uribe-Ramírez and Korchinsky [16] presented a theory yielding an analytical 
solution for the mass transfer rate at intermediate Reynolds number. In the most 
recent works, an increasing numbers of authors used Computational Fluid 
Dynamics to compute the flow fields in both phases, such as in works of Waheed 
et al. [17], or Paschedag et al. [18]. 

This work proceeds along these lines, dealing with the modeling and the 
direct numerical simulation of the absorption of a component  from a gas phase 
into a spherical liquid droplet in free fall in this gas phase. A component  is 
dissolved in the liquid droplet and reacts with  following this irreversible 
reaction: 

                                                                                                             (1) 
where  is the product of the reaction. 

This study is realized by computing the flow fields and the concentration 
fields simultaneously in both the gas and liquid phases. This enables to rigorously 

account for the coupling between convection, diffusion and reaction. This work is 

focused on water droplet falling in air but the model equations are presented in a 
general dimensionless form, making the model suitable for studying mass transfer 
in other systems. 

This work has two main goals. The first one is the detailed study of the time 
evolution of the droplet global mass absorption rate for various flow regimes and 
chemical regimes, which are characterized by the Reynolds number (defined in 
section 2.2) and the Hatta number (defined in section 2.3), respectively. The 
monitoring of the time evolution of the concentration fields in the droplet yields a 
better understanding of the influence of the interactions between the 

diffusive/convective mass transport and chemical reaction on the time evolution of 

the mass transfer rate. This procedure enables the identification, for each regime, 
of the phenomena controlling the mass transfer rate and how they possibly evolve 
during the mass absorption. The second goal is to propose analytical expressions 
to estimate the time evolution of the droplet mass transfer rate in the case of 



  

physical absorption (no chemical reaction). This is realized by comparing the 
simulation results with simplified modelling approaches based on the analysis of 
the mass transfer rate-limiting phenomena. 
 

 
2. Mathematical statement 
 
2.1. Assumptions 

 
This work is focused on the case of a spherical water droplet of constant 

volume in free fall in air. It is considered that the droplet falls at its terminal 
velocity and that its motion is rectilinear with a non-deformable interface. The two 
phases are considered incompressible and the flows in both phases are assumed to 
be stationary, laminar and axisymmetric. It is considered that the interface is 
completely free from surface-active contaminants and the continuity of the 
velocity and of the tangential shear stress is considered at the interface (in 

particular, possible Marangoni effects due to surface tension variations are 

neglected). In addition, it is considered that the mass absorption and the resulting 

chemical reactions in the liquid phase do not significantly affect the density and 

the viscosity of the two phases. With these assumptions, the continuity and 
momentum transport equations can be solved separately from the mass transport 
equations. 

The assumption of stationary flow is justified by the fact that the characteristic 
time of the transient droplet motion is much smaller than the characteristic time of 

diffusive mass transport, since the Schmidt number (defined in section 2.3) is 

much larger than one. 
According to Elperin and Fominykh [15], a spherical shape of a droplet 

falling in a gas phase is observed until a Reynolds number of 300, which 
corresponds approximately to a droplet diameter of 1.1 mm for a water droplet 
falling in air. This limit is also mentioned for limestone droplets by Akbar et al. 
[19]: the droplets remain spherical until 1 mm and their interface is non-oscillating 
until a Reynolds number between 300 and 400. Beyond this value, the droplet 
starts to be deformed and their interface oscillates. This value is also presented as 
an upper limit for the spherical shape in the numerical study performed by 
Amokrane and Caussade [20]. Clift et al. [21] reported that water droplets smaller 
than 1 mm falling in air can be considered as rigid spheres. Other authors, such as 



  

Bandyopadhyay and Biswas [2], claim that water droplets falling in gas are 
spherical and their interface is non-oscillating until a diameter of 0.5 mm but that 
this has no significant influence on the mass transfer rate at this stage since the 

effects of the oscillation of the interface and its deformation on the mass transfer 

mutually compensate each other. Therefore, it appears that the assumptions of a 
spherical shape and a non-deformable interface are valid, for water droplets in air, 
until a diameter of 1 mm, corresponding to a Reynolds number of 250. 

Concerning the laminar flow assumption, Amokrane and Caussade [20] 
evaluated that for droplets of water falling in air, the flow becomes turbulent in 
both gas and liquid phases for a diameter close to 1.6 mm. It corresponds to a 
Reynolds number close to 690 in the assumption of a rigid sphere. Moreover, 
according to Paschedag et al. [18], the flow of the gas phase around a droplet is a 
creeping flow until a Reynolds number of 0.1. For higher values, wakes are formed 
behind the droplet but the flow remains laminar until a Reynolds number of 500. 

The validity limit for the axisymmetric assumption appears to be a diameter 
of 1 mm for water droplets falling in air at their terminal velocity, according to 
Walcek et al. [22] (and cited by Altwicker and Lindhjem [23]), which claim that 
the internal circulation pattern is steady and that the absorption characteristics 
follow the model of Kroning and Brink [13]. 

Therefore, taking into account this literature review, the assumptions of the 
developed model are valid for Re ≤ 250. In addition, in order to prevent too large 
numerical errors of the simulation, the minimum considered Reynolds number is 
0.01. It corresponds, for water droplet falling in air, to a droplet diameter of 17 
µm. 

The model is based on the balance equations written in dimensionless form in 
an inertial reference frame attached to the center of mass of the droplet. A two-
dimensional axisymmetric computational domain is used. It is presented 
schematically in Fig. 1. This computational domain is divided in two distinct 
subdomains: one for the gas phase and one for the liquid phase. The droplet 
diameter  is used as the reference length. Therefore, the dimensionless radius of 
the droplet is 0.5. A domain diameter 10 times larger than the droplet is used in 
this work. In the reference frame, the gas is flowing upward.  and  are the 
dimensionless radial and axial component of the cylindrical coordinate system, 
respectively. 

 
Fig. 1 

 
2.2. Flow fields 

 
The flow fields are computed by solving the stationary incompressible  

Navier-Stokes and continuity equations in both gas and liquid phases. 
The droplet diameter  is used as the reference length and the terminal 

falling velocity  is used as the reference velocity. The reference pressure is 



  

defined as , where  is the gas density. The Reynolds number is defined as 
, where  is the gas dynamic viscosity. 

In both phases, let  be the dimensionless velocity and  the 
dimensionless pressure. The subscript  and  are used to refer to the liquid and 
the gas phases, respectively. 

The Navier-Stokes and continuity equations in the gas phase read: 
                                 (2) 

                                           (3) 

                                                                                                (4) 

while the Navier-Stokes and continuity equations in the liquid phase are: 
                              (5) 

                                        (6) 

                                                                                                  (7) 
where  and  are the density and the dynamic viscosity 

ratios, respectively. 
At the droplet interface, which is considered completely free from surface-

active contaminants, it is assumed, on the one hand, that the component of the 
shear stress tangent to the interface is continuous across the interface. On the other 
hand, the balance of the component of the shear stress normal to the interface is 
unnecessary since the interface is considered as non-deformable. Therefore, the 
following equation is written: 

  

                                    (8) 

where  and  are unit vectors, normal and tangent to the 
interface, respectively. 

In addition, it is assumed, at the droplet interface, that the component of the 
velocity tangent to the interface is continuous across the interface and that the 
component of the velocity normal to the interface equals zero in both phases: 

                                                                          (9) 
                                                                                   (10) 

At the top boundary of the domain, corresponding to the gas flow outlet, a 
free flow outlet boundary condition is imposed. The resulting equations write: 

                                                                                                             (11) 

                                                                 (12) 

                                                                 (12) 

At the bottom boundary of the domain, corresponding to the gas flow inlet, a 
uniform upward velocity is imposed: 

                                                                                                             (14) 
                                                                                                             (15) 

 
2.3. Concentration fields 



  

 
Since the mass transfer resistance can evolve with time due to the competition 

between convection, diffusion and reaction phenomena, the concentration fields 

are computed by solving the transient mass transport equations in both phases, 
imposing the gas-liquid equilibrium and the continuity of the mass transfer rate of 
the component  at the interface. 

The reference time  is defined as . Let  be the concentration 
of  in the droplet when the equilibrium with the gas phase is reached. 
Considering dilute liquid solution and perfect gas,  is defined as            

.  is the concentration of  in the gas phase far from the 
droplet and  , where  is the Henry,  is the perfect gas constant and  is 
the absolute temperature. Let  be the initial concentration of  in the droplet. 

 is used as the reference concentration of , in both the gas and liquid 
phases, while  is used as the reference concentration for . 

Let  be the dimensionless time. Let  be the dimensionless concentration 
of  in the gas phase.  and  are the dimensionless concentrations of  and  
in the liquid phase, respectively. 

As there is no chemical reaction in the gas phase, the following mass transport 

equation, involving only diffusive and convective transports, is considered for  in 

the gas phase: 

                                     (16) 

where  and .  is the Peclet number for the mass 
transport of  in the liquid phase. Note that this Peclet number can be calculated 
from the Reynolds number and the Schmidt number  of  in the 
liquid by . 

Two mass transport equations, involving diffusion, convection and chemical 

reaction, are considered for  and  in the liquid phase. They write: 
                                         (17) 

                                       (18) 
where  is the concentration ratio between the maximum 
concentration of  that can be reached in the droplet and the initial concentration 
of the  in the droplet and .  is the dimensionless chemical 
reaction rate. 



  

It is assumed that the reaction (see Eq. (1)) is of the first order with respect to 
the concentrations of  and , and that its kinetic constant is . Therefore,  is 
calculated by: 

                                                                                                       (19) 
where  is the Hatta number. 

The Hatta number compares the reference time  to the characteristic time of 
the reaction [24, 25]. A Hatta number lower than unity means that the reaction is 
slow compared to the convective time scale . When the Hatta number is of order 
one, the chemical reaction rate and  have the same order of magnitude. Finally, 
when the Hatta number is larger than one, the reaction occurs much faster than the 
time it takes for the droplet to travel a distance equal to its diameter. 

At the droplet interface, the gas-liquid equilibrium for  and the continuity 
across the interface of the flux of  normal to the interface are assumed. Therefore, 
the following boundary conditions can be written: 

                                                                                                             (20) 

                                                           (21) 

It is assumed that  does not cross the droplet interface. Therefore, the 
following no flux boundary condition can be written: 

                                                                                              (22) 
At the top boundary, it is assumed that the transport of  is only convective. 

Therefore, the top boundary condition reads: 
                                                                                          (23) 

At the bottom boundary, a uniform concentration of  entering the gas 
subdomain is assumed: 

                                                                                                             (24) 
At the initial time , it is supposed that the concentrations in both phases 

are homogeneous and at equilibrium in the liquid phase. The initial conditions for 
the concentrations write therefore: 

                                                                                                (25) 
                                                                                                      (26) 
                                                                                                      (27) 

 is the ratio between the initial concentration of  in the droplet, 
denoted , and the maximum concentration of  that can be reached in the 
droplet. 

 
 

3. Simulations 
 
The equations of the model are solved numerically using the COMSOL 

Multiphysics 3.4 software. This commercial code uses the finite element method to 
solve the boundary-value problem. The “Incompressible Navier-Stokes mode” 



  

coupled with the “Convection and Diffusion mode”, of the “Chemical Engineering 

Module”, are used in a 2D axisymmetric geometry. 
Since finite elements are used, a meshing of the computational domain has to 

be defined. The equations are discretized using quadratic Lagrangian elements. 
 

3.1. Meshing 
 
The two subdomains are meshed independently and so-called boundary-layer 

meshes are used in both gas and liquid phases near the interface. This mesh type is 
characterized by the coexistence of two mesh shapes in the domain. On the domain 
zones which are characterized by the presence of very important gradients, such as 
in boundary layers, rectangular shape meshes are used. Triangular shape meshes 
are used outside these zones, in the bulk of the phases. 

In the liquid subdomain (on the left in Fig. 2), a boundary-layer mesh is 
defined near the interface boundary and near the symmetry axis. This boundary-
layer zone contains 1080 meshes. It is made of a layer of 15 rectangles with a 
stretching factor equal to 1.15 in the direction normal to the interface and the 
symmetry axis, towards the droplet interior. The first layer is made of 44 
rectangles, regularly spaced along the interface and 28 rectangles regularly spaced 
along the symmetry axis. The thickness of the first layer equals 7.5 10-4. The 
remaining subdomain is meshed with 880 triangular meshes. 

 
Fig. 2 

 
In the gas subdomain (on the right in Fig. 2), a boundary-layer mesh is 

defined near the gas-liquid interface. This boundary-layer zone contains 280 
meshes. It is made of a layer of 20 rectangles with a stretching factor equal to 1.2 
in the direction normal to the interface, towards the bulk of the gas phase. The first 
layer is made of 14 rectangles, regularly spaced along the interface. The thickness 
of the first layer equal 1.75 10-3. The remaining subdomain is meshed with 3098 
triangular meshes, with 40 mesh points regularly spaced on each domain boundary 
and with 23 mesh points set on each part (up and down) of the symmetry axis. 

It is observed that this choice of meshing configuration leads to the best 
compromise between the convergence quality and the number of elements. If only 
a triangular meshing was used, the convergence quality would not be good enough 
even with very small meshes in the interface zone. A rectangular meshing only 
would lead to good convergence results but the number of elements required using 
this mesh shape would be too high and would lead to meshing errors at the center 
of the droplet. Moreover, it was verified that further refinement of this meshing 
configuration does not influence the simulation results. 

 
 
 



  

 
 

3.2. Numerical procedure 
 
According to the assumptions (see section 2.1), the mass transfer has no 

influence on the liquid flow; the momentum transport and the mass transport can 
be solved in a segregated way. For each step, the direct solver UMFPACK is used. 

The steady Navier-Stokes and continuity equations (Eqs. (2)-(7)) are first 
solved without mass transfer using the interface and boundary conditions (Eqs. 
(8)-(10) and (11)-(15), respectively). The initial guess is no flow and the pressure 
is set to zero in both phases: 

                                                                                       (28) 
                                                                                        (29)  

The resulting computed flows are then stored. 

In the case of a simulation of the physical absorption, the diffusion-convection 

problem is solved without chemical reaction. Only Eqs. (16) and (17) are solved 
with , using the flow fields calculated at the previous step, the interface and 
boundary conditions (Eqs. (20)-(21) and (23)-(24), respectively) and the initial 
conditions (Eqs. (25)-(26)). Note that the concentrations of  does not vary in this 
case and remains equal to its initial value (Eq. (27)). 

In the case of a simulation of an absorption coupled with a chemical reaction, 

the convection-diffusion-reaction problem (Eqs. (16)-(18) with  calculated by 

Eq. (19)) is solved, using the flow fields from the first step, the interface and 
boundary conditions (Eqs. (20)-(22) and (23)-(24), respectively) and the initial 
conditions (Eqs. (25)-(27)). 

 
3.3. Post-processing and engineering aspects 

 
The dimensionless flow and concentration fields obtained by the numerical 

resolution enables the calculation of some macroscopic data characterizing the 
flow and the dynamics of the mass transfer. 

Since these data are calculated by the shell integration of the computed flow 
and concentration fields, a polar coordinate system  is introduced for the 
sake of clarity.  is the radial coordinate and  is the polar coordinate (from the 
top pole to the bottom pole of the droplet). The presented post-processed data are 
therefore calculated using this coordinate system. 



  

The drag coefficient  is calculated from the total drag force  exerted by 

the gas phase on the droplet using the classical definition . 
This drag force is calculated by the shell integration of the z-component of the 
stress on the droplet interface. It can be demonstrated that  is given by: 

                                                                                     (30) 
where  is the z-component of the dimensionless stress exerted by the gas on 
the droplet interface, which is calculated by: 

                          (31) 

where  is the unit vector normal to the interface (directed towards 
the gas) at the considered point. 

In order to monitor the mass absorption process over time, a saturation level 
of the droplet  is followed. It is defined as the ratio between the absorbed 
amount of  at the time  over the maximum amount of  that the droplet can 
absorb.  at  and  when the droplet cannot absorb more of the 
component . 

 can be evaluated using spatially-averaged dimensionless concentrations 
in the droplet at the time , written  , where .  is given by: 

                                                            (32) 

where  is the dimensionless radius of the droplet. 
In the case of a physical absorption,  is calculated by: 

                                                                                                      (33) 
In the case of an absorption coupled with a chemical reaction, the absorbed  

can be accumulated in the droplet or can be consumed by the reaction with . The 
presence of  increases the droplet absorption capacity. The droplet can become 
saturated of  only if all the  is consumed. Therefore,  is calculated by: 

                                                                                (34) 

Concerning the evaluation of the mass transfer rate, the local dimensionless 
flux density of  at the time  on a point of the droplet interface located by  is 
computed by: 

                                                              (35) 

The dimensionless total flux of  across the overall droplet interface at the time  
is then calculated by: 

                                                                               (36) 
The Sherwood number at time , , which is a dimensionless mass 

transfer coefficient, is evaluated by dividing  by the product of the 

dimensionless droplet surface area (equal to ) and the dimensionless mass 



  

transfer driving force at time . This driving force is the difference between the 

maximum dimensionless concentration of  in the droplet (equal to 1) and . 
Therefore, the instantaneous Sherwood number at time  reads: 

                                                                                                (37) 

It is more common in engineering to describe the mass transfer efficiency by 

Sherwood number averaged over the absorption time. The time-averaged 
Sherwood number  over a dimensionless fall time  is calculated by: 
                                                                                       (38) 

In the case of a physical absorption, the concentration variation of  in the 
droplet is directly related to the mass transfer rate. By expressing a mass balance, 
the following equation can be written: 

                                                                                              (39) 

The time-averaged Sherwood number   (defined by Eq. (38)) is calculated 
using Eq. (39) in Eq. (37), leading to: 

                                                                                  (40) 

According to the expression of  in the physical absorption case (see Eq. (33)), the 
following relation between  and  is immediately deduced: 

                                                                                   (41) 

In the results section,  is presented as a function of the Fourier number 
 (such as in [9, 17, 18, 10]), for various  and various . Using the 

Fourier number enables the comparison of the different regimes considered with a 

“normalized” dimensionless time scale, since the characteristic time scales of the 

different cases can vary in a large range (the investigated Reynolds number 

variation in this study lies on 4 order of magnitude). 
Note that the Fourier number of a droplet can be related to the fall distance 

covered by this droplet. By the definitions of the reference time and the Fourier 
number, the value of  reached after a dimensional fall distance  is given by 
the following expression: 

                                                                                                        (42) 



  

Knowing  for a given , a force balance enables to calculate the dimensional 
droplet diameter , which leads to the following equation: 

                                                                                               (43) 

where  is the gravity acceleration. Therefore, the value of  reached by a droplet 

after a fall of  can be evaluated if its Reynolds number and its drag coefficient 

are known. For instance, in the experimental device of Amokrane and Caussade 
[20] where the fall height was 1 m, a droplet with a diameter of 1 mm (  close to 
250) reached the bottom at  = 2 10-3. For droplets with a diameter smaller than 
0.15 mm (  < 4), Fo was beyond 1 at the device bottom. 

 
 

4. Results and discussion 
 

4.1. Validation of the flow field 
 
The numerical simulation results are first compared with literature 

correlations for the drag coefficient. Since droplets having a diameter below 1 mm 

can be considered as rigid spheres as far as the gas flow is concerned, the 

computed drag coefficient is compared with correlations for a rigid sphere cited in 

[21]: Lapple (Eq. L3 of Table 5.1), Schiller and Naumann (Eq. S1 of Table 5.1), 
and the experimental values presented in their Tables 5.2 and 5.6. The results are 
presented in Fig. 3 for Reynolds number varying from  = 0.02 to  = 250. The 
result corresponding to the Stokes’law ( ) is also presented. 

 
Fig. 3 

 

It is observed that the calculated drag coefficients are in good agreement with 

the literature correlations for the range of Reynolds number used, though they tend 
to be slightly larger than the correlations for . According to these results, 
the numerical flow fields are considered to be validated. 

Note that this good agreement with correlations developed for rigid sphere 
shows that the gas flow is well estimated by solving only the momentum equations 



  

in the gas phase (Eqs. (2)-(4)), imposing a velocity equal to zero at the droplet 
interface. However, it is essential to compute the flows simultaneously in the gas 
and liquid phases (Eqs. (2)-(7)), with the appropriate conditions at the droplet 
interface (Eqs. (8)-(10)), to determine the flow induced in the droplet by its fall in 
the gas. 

 
4.2. Physical absorption 

 
Droplets having a Reynolds number up to 250 are considered. Typical values 

for an air-water system are used. The used density and viscosity ratios are 
 and , respectively. It is assumed that the gas component is 

highly soluble in the liquid, i.e.  is selected. The diffusivity ratio between 

the gas the and liquid phases is  and the Schmidt number is . 
It is considered that, at the initial state, the concentration of  is zero in the 
droplet: . 

During the simulation of the transient mass absorption, the level of saturation 
 is monitored. When  reaches 0.9999, the simulation is stopped in order to 

prevent the computation of an undetermined . Indeed, close to the saturation, the 
mass transfer driving force tends to zero as well as the mass transfer rate. 

In order to follow the absorption process evolution over time for the various 
cases, the time evolution of  and  are presented as a function of  in Fig. 4 for 
several Reynolds number values. Note that it is verified for  that Eq. (38) leads 
to the same results than Eq. (41). 

 
Fig. 4 

 
It is observed in Fig. 4-b that for , all the curves converge to a single 

curve (called hereafter ), meaning that the mass transfer rate is independent of 

the Reynolds number. The mass transfer rate is controlled only by the diffusion in 

the vicinity of the interface. For , all the curves converge to another single 
curve (called hereafter ), distinct from . For intermediate , a sudden 
change in the time evolution of  (as well in the time evolution of  in Fig. 4-a) 
is observed, after a time decreasing as the  increases. This change reflects a 
transition in the limiting step of the mass transport mechanism. 

The time evolution of the concentration field of  in the droplet is examined 
in detail for three Reynolds number values:  = 0.1,  =5 and  = 200. 

At  = 0.1, the dimensionless concentration field of  is presented for two 
 in Fig. 5. 

 
Fig. 5 



  

 

In this case, it seems that the mass absorption is dominated by the diffusive 

transport of  in the droplet, as the time evolution of the concentration field is very 

close to what would be observed in a purely diffusive process. 

The dimensionless concentration field of  is presented for four  values at 
=5 in Fig. 6. 

 
Fig. 6 

 
It is observed that the absorbed component  is simultaneously transported by 

convection in the periphery of the droplet from the lower pole to the upper pole 

and penetrates in the droplet by diffusion. In this case, it seems that the convective 

and diffusive transport have the same order of magnitude. 

The dimensionless concentration field of  is presented for four  values at 
 in Fig. 7. 

 
Fig. 7 

 
It can be observed that the absorbed component  is, in a first stage, mainly 

transported by convection in the periphery of the droplet from the lower to the 
upper pole.  starts to penetrate in the vortex interior only after the vortex 
periphery almost reaches saturation in .  penetrates then gradually from the 

vortex periphery towards the interior by a mainly diffusive process. 

Based on this result analysis, it can be concluded that three different steps can 

be observed during the overall absorption process. The first step is purely 



  

diffusive, as demonstrated by the fact that for any , the behavior at sufficiently 

small time is given by a single curve ( ), independent of . The reason why 

convection is not directly effective is probably that when the boundary layer is 

very thin, it is uniform along the interface, such that convection affects the 

concentration distribution only at the poles. Anyway, this first step is short in 
practice, especially for large Reynolds number. During the second step, the 
convection begins to deplete this boundary layer, first at the upper pole, the 
boundary layer becomes less saturated and this enhances the transfer. That 
moment corresponds to the sharper increase of  and the less pronounced 
decrease of . In the third step, this enhancement then stops after a certain time, 
when the liquid richer in component  starts to reach the lower pole. At this 
moment, the “loop is closed”, and the concentration of  in the periphery of the 
vortex re-increases, progressively saturating the interfacial region and decreasing 

the transfer. Consequently, the transfer rate is again limited by the diffusion of the 

component  accumulated in the periphery, towards the vortex interior. 
The identification of these three successive limiting steps for the mass transfer 

rate enables us to propose simplified mechanisms to describe the mass transfer rate 
evolution for any . 

For , only the first step is observed. In this case, the convective 
contribution to the mass transport becomes negligible and the mass absorption is 

dominated by the diffusive transport in the droplet. The mass transfer in the droplet 

can therefore be modeled assuming the purely diffusive mass transport in a 

stagnant liquid droplet, which writes: 
                                                                                          (44) 

Using Eq. (25) as initial condition and using  and   as 

boundary conditions, Eq. (44) can be solved analytically and the solution reads: 



  

                    (45) 

By spatially averaging Eq. (45) and expressing it as a function of , the following 
expression can be written: 

                                                (46) 
Therefore, using Eq. (41) and by injecting Eq. (46) in Eq. (33),  can be 
estimated as a function of  by the following analytical expression: 

                                       (47) 

Note that this expression tends to  for . 
For , the third step is directly observed. The vortex periphery can be 

considered as instantaneously saturated and the mass absorption is controlled by 

the diffusive transport within the vortex. The vortex zone, in the three-dimensional 

droplet, has the form of a ring torus. If this torus is transversally cut and unfold 
along the longitudinal direction, the generated volume is a cylinder. The absorbed 

mass which has to penetrate by a mainly diffusive process through this toroidal 

vortex can then be modeled by the diffusive mass transport through a cylinder 

along the cylinder radius coordinate  with an imposed concentration at its 
surface. This model equation writes: 

                                                                                    (48) 

Using Eq. (25) as initial condition and using  and   as 

boundary conditions, Eq. (48) can be solved analytically and the solution reads: 
                                  (49) 

where  is the dimensionless radius of the cylinder equivalent to the torus 
formed by the vortex zone,  is the ith zero of the zero-order Bessel function of the 
first kind ,  and . 

The spatially-averaged concentration of  over the cylinder volume, 
expressed as a function of the Fourier number, writes then: 

                                      (50) 

Let  be the dimensionless volume of the cylinder equivalent to the torus 
formed by the vortex zone. Since the vortex periphery is considered as 
instantaneously saturated (with  in this zone), the spatially-averaged 
concentration of  in the overall droplet is related to the spatially-averaged 



  

concentration in the torus modeled by the cylinder by                                 
. Therefore, the spatially-averaged concentration 

of  over the droplet volume writes: 

                                    (51) 

Using Eq. (41) and by injecting Eq. (51) in Eq. (33),  can be estimated as a 
function of  by the following analytical expression: 

                                 (52) 

This equation tends to  for .  and  are adjustable 

parameters of the model and their values are estimated by the comparison with the 
curve  of Fig. 4-b.  is estimated to  and  is estimated to . 
Note that these fitted values are geometrically coherent for a ring torus contained 
in a spherical droplet. 

For intermediate  and limited , it is observed during the initial stage of 
the mass absorption that the mass transfer rate is limited by the penetration in the 

vicinity of the interface, i.e. by a diffusive mechanism. A thin layer of liquid in 

contact with the interface can then be considered as a film and the width of this 
layer depends on the toroidal vortex angular velocity, which decreases as the 
Reynolds number increases. Therefore, the penetration-film model of Toor and 
Marchello [26] is proposed to model the mass transfer rate before the saturation of 
the vortex periphery. The mass transport equation writes: 

                                                                                                         (53) 
where  is the dimensionless distance normal to the interface, oriented to the 
droplet interior (  at the interface). Let  be the dimensionless film 
thickness of the model (i.e. the ratio of the dimensional film thickness over the 
dimensional droplet diameter). Eq. (53) is solved analytically using           

 as initial conditions and  and 
 as boundary conditions. The solution reads: 

        (54) 

The mass flux density is then calculated by: 

                                     (55) 

Using ,  and the definition of  
(see Eq. (38)),  can then be estimated as a function of  by the following 
analytical expression: 

           (56) 

 is an adjustable parameter of this model. The values of  are estimated for 
various  (between 1 and 250) by fitting the curves computed using Eq. (56) with 



  

the initial part (i.e. before the transition to the third step) of the  curves in Fig. 4-
b. 

It is observed that the values obtained for  decrease as  increases. It is 
found that  can be correlated to  by the following expression: 

                                                                                           (57) 
To summarize, thanks to these analysis,  for a droplet with a given  can 

be estimated at any  using analytical expressions. For  < 1,  can be 
approached by , given by Eq. (47). For  > 1,  can be approached by 

, given by Eq. (56) and using Eq. (57), during the initial stage and then by 
, given by Eq. (52), when the vortex periphery is saturated. The transition is 

reached when  becomes larger than . In other words,  can be 
approached by: . 

The time evolution of the analytical approximations of  are presented in 
Fig. 8 and superimposed to the numerical simulation results. Eq. (47) is used for 

,  is used for  between 1 and 250, and Eq. 
(52) is used for . The analytical expressions are presented in solid lines 
and the numerical simulation results are presented in dashed lines. It is observed 
that the analytical expressions agree very well with the numerical simulation 
results. 

 
Fig. 8 

 
To end this section, a last comment is done on the curve presented in Fig. 4-b. 

For  > 1, it seems that the Fourier number at which the transition occurs is 
proportional to . It would mean that the transition occur at a Fourier number 
proportional only to the number of diameter that the droplet has covered during its 
fall (when the “loop is closed”). For a given physico-chemical system, this number 
would be constant and independent of the droplet size. This point will be analyzed 
in details in a future work. 

 
4.3. Mass absorption enhanced by chemical reaction 

 

In this section is studied the effect of a chemical reaction on the mass transfer 

rate, for various Reynolds and Hatta numbers. The initial concentration of  is 
considered in excess compared to the concentration of  at saturation, as it is the 
case in the industrial practice.  is chosen as ten times larger ( ) than 

. The simulations are realized for four values of the Reynolds number, 

corresponding to the different regimes which have been described for the physical 

absorption:  = 0.1,  =1,  =10 and  = 100. For each value of the Reynolds 



  

number, three values of the Hatta number, corresponding to different chemical 

regimes, are considered:  = 0.1,  = 1 and  = 10. The same values than 
those chosen in the previous section are used for  , , , ,  and . It is 

considered that the diffusion coefficient of the reactant  is smaller than the 

diffusion coefficient of , then  is selected. 

The effect of a chemical reaction on the mass transfer rate and the saturation 

evolutions, for various Reynolds and Hatta numbers are presented in the following 
figures. The time evolution of  and of  as functions of  for the three values 
of  are presented and compared with the physical absorption case in Figs. 9, 11, 
13 and 15 for  = 0.1,  = 1,  = 10 and  = 100, respectively. The 
dimensionless concentration fields of  and , for the three values of , are 
presented at  in Fig. 10, at  in Fig. 12, at  in Fig. 14 
and at  in Fig. 16, for  =0.1,  = 1,  = 10 and  = 100, 
respectively. 
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For  = 0.1, it is observed in Figs. 9-a, 11-a, 13-a and 15-a that the presence 

of  has a significant influence on the time evolution of . The saturation of the 



  

droplet is delayed and it is observed that this delay increases as the Reynolds 
number decreases. By contrast, it is observed that the presence of the chemical 
reactant does not have a significant influence on the mass transfer rate. Indeed, the 
time evolution of  is always close to the evolution observed for physical 
absorption, as it can be observed in Figs. 9-b, 11-b, 13-b and 15-b. A slight 
enhancement is observed after  only for the case  = 100 (Fig. 15-b). 

Note that it might seem surprising that the effect of the chemical reaction is so 

pronounced on the evolution of the saturation  (see Fig. 9-a), especially for small 
values of , while it has only a very small impact on  (see Fig. 9-b). Actually, 
even though the overall rate of absorption is almost unchanged by the chemical 

reaction when the latter is slow,  is calculated in a different way than in the 

physical absorption case, i.e. the full storage capacity of the droplet is now 

considered (see the difference in Eqs. (33) and (34), the latter incorporating the 

additional storage capability due to chemical conversion by reaction with the 
reactant , which increases as  decreases). 

On the one hand, the analysis of the concentration fields of  (in Figs. 10, 12, 
14 and 16) shows that, for any , the concentration of  decreases gradually in 
the droplet but its concentration field remains almost homogeneous. On the other 
hand, it is observed that the evolutions of the concentration fields of  with  are 
similar to those observed in the physical absorption case. Therefore, the mass 
transfer rate remains controlled only by the mass transport of  but the saturation 
is delayed by the presence of . 

For  = 1, it appears that the time evolutions of  and  with  is 
determined by a combination of the phenomena controlling the mass transfer for 

 = 0.1 and  = 10 (analyzed hereunder), especially by the coupling of the 
transports of  and . Indeed, for any , an intermediate situation between the 
cases  = 0.1 and  = 10 is observed for the considered . 

For  = 10, it is observed in the time evolution of  for any  (see Figs. 9-
a, 11-a, 13-a and 15-a) that the saturation is always reached around the same 
Fourier number than in the physical absorption case. By contrast, significantly 

different behaviors are observed for the time evolution of , depending on . 

For  = 0.1, it is observed in Fig. 9-b that the mass transfer rate is higher 
than in the physical absorption case, especially around , but it tends to be 



  

the same than in the physical absorption case for . The analysis of the 
concentration fields of  and  (see the right part of Fig. 10) shows that  is 
depleted by its consumption in the reaction. The concentration of  close to the 
interface cannot increase as long as  is present in this zone, maintaining a high 
concentration gradient of  near the interface and enhancing the mass transfer rate. 
For this value of , it has been shown that the mass transport mechanism is 

mostly diffusive. Therefore, the mass transfer rate is mostly controlled by the 

diffusive transport of  in a first stage, and it becomes controlled by the diffusive 

transport of  in a second stage, when  is depleted. 
For  = 1, it is observed in Fig. 11-b that the mass transfer rate becomes 

significantly higher than in the physical absorption, until the droplet is close to the 
saturation (see the corresponding  in Fig. 11-a). The analysis of the 
concentration fields of  and  (right part of Fig. 12) reveals that the mass transfer 
rate is controlled by the transport of  in a first stage, and it becomes controlled by 
the transport of  in a second stage, but this time the mass transport is determined 

by the combination of the convection and the diffusion. 

For  = 10 and  = 100, it is observed in Figs. 13-b and 15-b that the mass 
transfer rate is strongly enhanced (even more for  = 100 than for  = 10) until 
the liquid is close to the saturation. A sudden change in the curve of  is also 
observed around  for  = 10 and around  for  = 100, 
reflecting a transition in the mechanism controlling the mass transfer rate, such as 
in the physical absorption case. Note that these transition occur at approximately 
the same  than those observed in the physical absorption. The analysis of the 
concentration fields of  and  (right part of Figs. 14 and 16) shows that  is 
completely depleted in the periphery of the toroidal vortex. The concentration of  
is still high within the vortex and the concentration of  is just starting to fill the 
vortex periphery. After that, the concentration of  decreases gradually within the 
vortex, while the concentration of  increases and the transport of  and  within 

the toroidal vortex is mostly diffusive. Therefore, the mass transfer rate is 

controlled in a first stage by the convective transport of  in the vicinity of the 
interface. It is strongly enhanced in a second stage by the convective transport of  



  

in the vortex periphery to be finally controlled by the coupling of the reaction with 

the diffusive transport of  and  within the vortex. 

 
 

5. Conclusion and perspectives 
 
This work has considered direct numerical simulations of the gas-droplet 

mass transfer of a component  in gas phase into a liquid spherical droplet in free 
fall. A component  is dissolved in the liquid droplet, and this component reacts 
with  in the liquid phase, leading to an increase of the storage capability and an 
enhancement of the mass transfer rate. 

The mass transfer is studied by computing simultaneously the flow fields and 
the concentration fields in both gas and liquid phases. The analysis of the time 
evolution of the concentration fields for various regimes, distinguished by the 
Reynolds and the Hatta numbers, has enabled us to highlight the coupling between 
the phenomena for each regime and to identify which ones control the mass 
transfer rate. 

In section 4.2, the physical absorption (without reaction) is studied. It is 

concluded from the results analysis that three different steps can be observed 

during the overall absorption process. The first step is purely diffusive, as 

demonstrated by the fact that the behavior at sufficiently small time is independent 

of . The diffusive transport is directed towards the droplet center. During the 

second step, the convection begins to deplete this boundary layer, first at the upper 
pole. The boundary layer becomes less saturated and this enhances the transfer. In 
the third step, this enhancement then stops after a certain time, when the liquid 
richer in component  starts to reach the lower pole. The concentration of  in the 
periphery of the vortex re-increases, progressively saturating the interfacial region 
and decreasing the transfer. Consequently, the transfer rate is again limited by the 



  

diffusion of the component  accumulated in the periphery, towards the vortex 

inside. 
For , only the first step is observed. For , the third step is 

directly observed. For intermediate , the mass transfer rate is controlled 
successively by these three limiting steps and the time of transition between the 
steps decreases as  increases. 

The identification of these three successive limiting steps for the mass transfer 
rate enables us to propose simplified mechanisms to describe the mass transfer rate 
evolution for any flow regime. Based on these simplified mechanisms, analytical 
expressions are developed to evaluate  as a function of  for any . 

In the limit of  (first step),  is modeled by  (Eq. (47)), while 
in the limit of  (third step),  is modeled by  (Eq. (52)) (with the 
adjustable parameters  and  fitted to  and , respectively). 

For  < 1,  can be approached by . For  > 1, 
 can be approached by  during the initial stage (given by Eq. 

(56) and using the correlation (57) developed by comparison with the numerical 
simulation results), and later by , when the periphery of the toroidal 
vortex is saturated. The transition is reached when  becomes larger than , 
therefore   can be approached by . 

It is worth mentioning that these analytical expressions are compared to the 
numerical simulation results (see Fig. (8)) and that an excellent agreement is 
observed. 

In section 4.3, the influence of a chemical reaction on the mass absorption rate 
is investigated. In this case, the chemical reaction can enhance the mass transfer 
rate and can delay the saturation of the droplet, depending on the Reynolds and the 
Hatta number. 

For  < 1, it is observed that the presence of  does not have a significant 
influence on the mass transfer rate and it is concluded that the mass transfer rate 
remains mostly controlled by the mass transport of  in the droplet, as without 
reaction. However, the saturation is delayed by the presence of  as it increases 
the droplet absorption capability due to chemical conversion by reaction and the 
delay increases as the Reynolds number decreases. 

For  = 1, an intermediate situation is observed. The mass transfer rate of  
also gets influenced by the transport of  in the droplet. 

Finally, for  > 1, the mass transfer rate is controlled by the transport of  in 
the droplet in a first stage. Later, it becomes controlled by the interaction between 
the reaction and the transport of  and . The prevalent mass transport mechanism 

depends on the value of . For  < 1, the mass transport is mostly diffusive 

towards the droplet center. For  = 1, the mass transport is determined by the 



  

combination of the convection and the diffusion. For  > 1, the mass transfer rate 

is controlled in a first stage by the convective transport of  in the vicinity of the 
interface. It is controlled in a second stage by the convective transport of  in the 
vortex periphery and finally it is controlled by the interaction of the reaction and 

the diffusive transport of  and  within the vortex. 

The results presented in this paper and their detailed analysis show the 
importance of taking into account all the phenomena simultaneously in gas-droplet 
mass transfer modeling. However, a further analysis of some issues for  > 1 
would be worth of interest, such as the observation that in the physical absorption, 
the value of  at the transition between the second and the third step seems to be 
proportional to  and the observation that the value of  at the transition for 

 = 10 seems to be the same than in the physical absorption. A criterion 
determining the value of  at the transition could be identified. It would also be 

full of interest to develop a simplified model incorporating the effect of chemical 

reaction. In the limit , it would be possible to determine a correlation for the 
mass transfer rate enhancement, based of the mass transport mechanism observed 
in the physical absorption for any , at least for the initial stage (when the mass 
transfer rate is controlled by the transport of ). 

Another perspectives are to model the effects of the presence of surface-active 

contaminants and to extend this analysis to larger drops. In this latter case, it will 
be necessary to take into account the deformations and the oscillations of the drop 
interface and the turbulence in the flow fields. Several methods are available and 
have been described in the literature for physical absorption, such as the moving 
element method [8] or the level set method [27]. 
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> Gas-droplet mass transfer model coupling convective and diffusive mass transport and 
chemical reactions 

> Detailed analysis of interactions between phenomena for various flow and chemical regimes 

> Identification of absorption rate controlling phenomena 

> New analytical expression for the mass transfer rate in the physical absorption case 

 


