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ORIGINAL ARTICLE1

2 Persistence of critical flicker fusion frequency impairment

3 after a 33 mfw SCUBA dive: evidence of prolonged nitrogen

4 narcosis?

5 C. Balestra • P. Lafère • P. Germonpré

6 Received: 29 June 2011 / Accepted: 19 March 2012
7 � Springer-Verlag 2012

8 Abstract One of the possible risks incurred while diving

9 is inert gas narcosis (IGN), yet its mechanism of action

10 remains a matter of controversy. Although providing

11 insights in the basic mechanisms of IGN, research has been

12 primarily limited to animal studies. A human study, in real

13 diving conditions, was needed. Twenty volunteers within

14 strict biometrical criteria (male, age 30–40 years, BMI

15 20–23, non smoker) were selected. They performed a no-

16 decompression dive to a depth of 33 mfw for 20 min and

17 were assessed by the means of critical flicker fusion fre-

18 quency (CFFF) measurement before the dive, during the

19 dive upon arriving at the bottom, 5 min before the ascent,

20 and 30 min after surfacing. After this late measurement,

21 divers breathed oxygen for 15 min and were assessed a

22 final time. Compared to the pre-dive value the mean value

23 of each measurement was significantly different

24 (p\ 0.001). An increase of CFFF to 104 ± 5.1 % upon

25 arriving to the bottom is followed by a decrease to

26 93.5 ± 4.3 %. This impairment of CFFF persisted 30 min

27 after surfacing, still decreased to 96.3 ± 8.2 % compared

28to pre-dive CFFF. Post-dive measures made after 15 min of

29oxygen were not different from control (without nitrogen

30supersaturation), 124.4 ± 10.8 versus 124.2 ± 3.9 %. This

31simple study suggests that IGN (at least partially) depends

32on gas-protein interactions and that the cerebral impair-

33ment persists for at least 30 min after surfacing. This could

34be an important consideration in situations where precise

35and accurate judgment or actions are essential.

36

37Keywords Diving � Inert gas narcosis � Critical flicker

38fusion frequency

39Introduction

40Although SCUBA (self-contained underwater breathing

41apparatus) diving is relatively safe, one of the possible risks

42incurred is inert gas narcosis (IGN), also called ‘‘nitrogen

43narcosis’’ or rapture of the depths.

44IGN can provoke several troubles (Lowry 2005;

45Richardson et al. 2005) such as temporal and spatial dis-

46orientation, physical coordination alteration, mood disor-

47ders, loss of long term memory. Symptoms of IGN

48resemble alcohol intoxication or the early stage of anes-

49thesia or hypoxia (Dean et al. 2003). As depth and pressure

50increase, the symptoms worsen and eventually lead to

51unconsciousness (Bennett 2004; Pastena et al. 2005).

52Although in 1935 Behnke et al. (1935) correctly asso-

53ciated these phenomena to a raised partial pressure of

54nitrogen, its precise mechanism of action remains a matter

55of controversy. For long, inert gas narcosis was regarded as

56a pure biophysical phenomenon and it was assumed that

57breathed nitrogen did not interact biochemically with the

58cellular metabolism (Bennett 2004; Lowry 2005). The

59traditional view was that narcosis or anesthesia occurred
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60 when the volume of a hydrophobic membrane site was

61 caused to expand beyond a critical level by the absorption

62 of molecules of a narcotic gas. The observation of the pres-

63 sure reversal effect during general anesthesia has long sup-

64 ported this lipid theory (Jibu 2001; Wlodarczyk et al. 2006).

65 However, results of the most recent animal studies have

66 revealed that nitrogen narcosis could interact with the pro-

67 duction, release and uptake of several brain neurotransmitters

68 supporting a protein binding theory (Rostain et al. 2011).

69 In rats, neurochemical studies in the striatum have

70 demonstrated that a rise in nitrogen partial pressure induced

71 a decrease in dopamine release (Dedieu et al. 2004), a

72 decrease of glutamate concentration (Vallee et al. 2009,

73 2010), and also enhanced gamma-aminobutyric acid

74 (GABA-A) receptors activity (Balon et al. 2002; David

75 et al. 2001; Lavoute et al. 2008).

76 Because of the paucity of the literature a human study in

77 real diving conditions was needed to confirm that changes

78 in human brains parallel the observations made in vivo in

79 the rodent brain. However reliable indices to quantify the

80 effects of inert gas narcosis are not yet available. Ideally,

81 these indices should be reproducible, less subject- or

82 investigator-dependent than a psychometric behavioral

83 approach, based on observing a change in neurological

84 parameters like electroencephalographic recordings (Pas-

85 tena et al. 2005) but easy to implement underwater. The

86 critical flicker fusion frequency (CFFF) seems to answer

87 these needs. It is a tool that has already been used in the

88 field of diving medicine research (Seki and Hugon 1976).

89 The CFFF variations occur parallel to EEG modifications

90 and may reveal neuropsychological troubles that are not

91 apparent from subjective reports (Seki and Hugon 1976).

92 The use of such measure is advocated by the particular

93 characteristics of the CFFF: non invasive and of good

94 reliability in cortical arousal (Hou et al. 2007; Rota-Baterlink

95 1999) as well as a good marker of cortical alteration to

96 physical workload (Davranche and Pichon 2005; Luczak et al.

97 1995; Luczak and Sobolewski 2005), drug administration

98 (Hindmarch 1982; Hunter et al. 1994), alcohol intoxication

99 (Leigh 1982; Liu and Ho 2010; Schillaci and Fazio 1967),

100 anesthesia (Salib et al. 1992; Sharma et al. 2011; Wernberg

101 et al. 1980), hypoxia (Truszczynski et al. 2009) or in case of

102 encephalopathy (Ali et al. 1994; Chang et al. 2007; Kircheis

103 et al. 2002; Lauridsen et al. 2011). Using the CFFF, we

104 performed an objective measurement of the effects of IGN in

105 divers.

106 Materials and methods

107 After written informed consent and Ethics Committee

108 approval (CE2008/66), 20 male experienced divers (Min-

109 imum certification ‘‘Autonomous Divers’’ according to

110European norm EN 14153-2 or ISO 24801-2 with at least

11150 logged dives) volunteered for this study. They were

112selected from a large sports diver population in order to obtain

113a group of comparable age [30–40 years, 35.38 ± 3.59

114(mean ± SD)], body composition (BMI between 20 and

11525, 23.6 ± 1.15) and comparable health status: non

116smokers with regular but not excessive physical activity

117(aerobic exercise one to three times a week). Prior to entry

118into the study, they were assessed fit to dive. Divers

119needing visual correction underwater and divers taking any

120medications such as steroids, benzodiazepine, barbiturates,

121or psychoactive drugs were excluded. Participants were

122instructed not to dive 72 h prior to the experimental dive

123and not to drink any alcoholic or caffeine-containing bev-

124erages 4 h before the dive.

125Each diver performed a dive to a depth of 33 mfw for

12620 min in a pool environment (Nemo33, Brussels, Belgium)

127with a water temperature of 33 �C, thus needing no thermal

128protection suit. This depth-time profile falls within accepted

129‘‘no-decompression limits’’ (NAVSEA 2008). Descent

130speed was at 15 m per minute and ascent speed was at 10

131meters per minute to the surface, with no safety stop (none

132required according to the dive table used).

133Divers were assessed with the CFFF using a specific

134watertight device built for the occasion by Human

135Breathing Technology (HBT, Trieste, Italy). The device

136consists of a rotating ring, surrounding a short cylindrical

137waterproof housing of 8 cm diameter containing the

138numeric (digital) frequency indicator. Attached to this

139housing is a flexible cable, on the end of which a single

140blue LED (Light Emitting Diode) (color temperature

1418,000 K) is enclosed in a smaller cylindrical container (to

142shield it from stray light and reflections). While the subject

143to be tested is looking straight at the LED light at a distance

144individually adapted to his personal vision (generally

145around 50 cm), the investigator turns the dial slowly

146clockwise or anticlockwise in order to increase or decrease

147the flickering frequency of the LED. As there are no

148markings on the dial, nor a visible ‘‘starting position’’, the

149test subject has no indication whatsoever of the actual

150flicker frequency. When the subject sees a change from

151fusion to flicker (or flicker to fusion), he signals this to the

152investigator, who notes the actual frequency—which is the

153definition of CFFF (Rota-Baterlink 1999; Tytla et al.

1541990). This test is carried out systematically three times in

155order to check its reproducibility. The average of the three

156measurements was noted as the actual individual CFFF.

157Divers were assessed immediately before the dive (base-

158line), upon arriving at the bottom, 5 min before the ascent

159(after 15 min at 33 mfw), and 30 min after surfacing. Once

160the late measurement was made, the diver breathed oxygen

161for 15 min (using a non-rebreather mask at a flow of 15 L

162per minute) and then CFFF was assessed a final time.
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163 We furthermore performed a control experiment, where

164 the same individuals were assessed with CFFF before and

165 after 15 min of oxygen breathing without any dive sched-

166 uled or performed within a 3 days period in order to assess

167 any oxygen effect in absence of nitrogen supersaturation.

168 Taking the initial value as 100 %, percentage variations

169 were calculated allowing an appreciation of the magnitude

170 of the change rather than the absolute values. Standard

171 statistical analysis was performed after testing for nor-

172 mality, using GraphPad Prism version 5.00 for Windows

173 (GraphPad Software, San Diego, CA, USA) on a personal

174 computer.

175 Results

176 All sets of data passed both Kolmogorov–Smirnov and

177 Shapiro–Wilk normality tests, allowing us to assume a

178 Gaussian distribution.

179 The evolution of CFFF during and after the dive is

180 illustrated in Fig. 1. Compared to the pre-dive value

181 (100 %) the mean value of each measurement is signifi-

182 cantly different. An increase of CFFF to 104.0 ± 5.1 %

183 when arriving to the bottom is followed 15 min later by a

184 decrease to 93.5 ± 4.3 %. This impairment of CFFF

185 persists 30 min after surfacing, being still decreased to

186 96.3 ± 8.2 % compared to the pre-dive CFFF (100 %).

187 Each single measurement is statistically different from the

188 baseline (one sample t test p\ 0.05 or lower). Paired t test

189 demonstrated a statistical difference between the first and

190 second underwater measurement (p\ 0.001), but no

191statistical difference between the second underwater mea-

192surement and the post-dive measurement (p = 0.099).

193After 15 min of oxygen breathing, CFFF increases signif-

194icantly (p\ 0.0001) and is 117.9 ± 9.8 % higher than the

195pre-dive CFFF (Paired t test, p\ 0.001).

196When non nitrogen supersaturated (Fig. 2), compared to

197the pre-oxygen value (100 %), an increase of CFFF up to

198124.2 ± 3.9 % was noted which was statistically signifi-

199cant (one sample t test, p\ 0.001). When diving (with

200nitrogen supersaturation) we took the post-dive pre-oxygen

201value as a new baseline to compare the oxygen effect with

202the control experiment (without nitrogen supersaturation).

203With this new baseline, the increase (124.4 ± 10.8 %

204observed after oxygen breathing in the post-dive period) is

205statistically not different from the non nitrogen saturated

206increase (paired t test, p = 0.72). This suggests that the

207post-dive, post-oxygen increase of CFFF is due to a direct

208effect of oxygen rather than to a supplemental nitrogen

209washout effect by oxygen.

210Discussion

211Indices to quantify the effects of IGN can be roughly

212divided into two approaches.

213The first is a behavioral approach, measuring task per-

214formance such as mental arithmetic, memory, reaction time

215and manual dexterity. Although these behavioral studies

216have confirmed a progressive deterioration with increasing

217pressure, many of these tests have been criticized because

Fig. 1 Percentage variation of CFFF during and after a 20 min dive

to 33 mfw/110 ffw. Pre-dive CFFF value is taken as 100 %. Each

subject is compared to his own pre-dive value. (***p\ 0.001;

**p\ 0.01; *p\ 0.05; ns not significant) (n = 20)

Fig. 2 Variation of CFFF after 15 min of oxygen breathing with and

without diving. Pre-oxygen breathing CFFF value is taken as 100 %

(when diving, pre-oxygen value is the post-dive value). Each subject

is compared to his own pre-oxygen value. (***p\ 0.0001; ns not

significant) (n = 20)
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218 of the influences of motivation, experience and learning on

219 the test results (Lowry 2005).

220 The second approach relies on observing a change in

221 objective, measurable neurological parameters. In this

222 matter, even if there are some limitations (Rota-Baterlink

223 1999; Tytla et al. 1990), some authors have emphasized the

224 advantages of CFFF assessment (Davranche and Pichon

225 2005; Luczak and Sobolewski 2005; Truszczynski et al.

226 2009) as an objective, quantitative, and important method

227 for measuring alertness and arousal (Feshchenko et al.

228 1994; Ginsburg et al. 1982; Luczak and Sobolewski 2000;

229 Railton et al. 2009). Moreover, CFFF seems to be a better

230 way of testing cerebral arousal than the classical behavioral

231 approach as in anesthesia, CFFF has been demonstrated to

232 parallel brain impairment earlier than subjective symptoms

233 (Salib et al. 1992; Wernberg et al. 1980) or behavioral tests

234 (number connection test A and B, digit symbol test, serial

235 dotting test, and line tracing test) (Sharma et al. 2011).

236 When executed in standard conditions, the CFFF test

237 makes it possible to measure in a longitudinal way the

238 evolution of the state of cortical arousal in test subjects

239 (Luczak and Sobolewski 2005). The construction of a

240 waterproof housing for the CFFF test device, designed to

241 keep the test subject fully blinded to the frequency read-out

242 of the flickering LED, has allowed for the first time ‘‘real-

243 life’’ measurements of CFFF while under water.

244 The results of this study are also unique because to our

245 knowledge, it is the first time that effect of inert gas nar-

246 cosis is measured for a period of time after surfacing. One

247 of the most remarkable observations was undoubtedly that

248 the CFFF results at the 30 min post-dive time point dem-

249 onstrated impairment of cerebral arousal persisting long

250 after surfacing. Indeed, based on the lipid theory (Jibu

251 2001; Wlodarczyk et al. 2006), diver’s training programs

252 advise that in the event of nitrogen narcosis, divers should

253 ascend a few meters in order for the narcotic effects to

254 dissipate rapidly. However, it is shown here that, even if

255 subjective feelings of narcosis may rapidly abate, the

256 cerebral impairment persists for at least 30 min after sur-

257 facing. This may be an important consideration in situa-

258 tions where precise and accurate judgment or actions are

259 essential, such as in the hazardous situations in recreational

260 diving or in professional (industrial, military) diving.

261 Recent observations suggest that there is a correlation

262 betweenCFFF and post-dive perceived fatigue. In a previous

263 study (Lafere et al. 2010)we have shown that in a large group

264 of divers (n = 219), the change in perceived fatigue level

265 after a single dive is significantly lower when enriched air

266 Nitrox (EANx) was breathed rather than air which was

267 demonstrated with a post-dive decrease of CFFF while

268 breathing air and a slight post-dive increase while breathing

269 EANx. The only difference between these two groups resi-

270 ded in the different proportion of oxygen/nitrogen in the

271breathing mixture, emphasizing the importance of the effect

272of these two gases on brain function. Indeed, electroen-

273cephalographic recordings of subjects exposed to com-

274pressed atmosphere in a pressure chamber in which the

275partial pressure of both oxygen and nitrogenwere controlled,

276showed that any changes observedwere related to the oxygen

277partial pressure and that the depressant effect of nitrogen is

278only revealedwhen amixture containing a partial pressure of

2790.2 ATA of oxygen is breathed (Pastena et al. 2005).

280As oxygen seems to be the most important gas, it has to

281be remembered that hyperoxia has been shown to facilitate

282nerve conduction, possibly as a consequence of oxidative

283stress (Brerro-Saby et al. 2010). An enhanced production of

284reactive oxygen species (ROS) alters the conductance of

285potassium channels in excitable cells (Kovachich et al.

2861981; Matalon et al. 2003). Oxygen is also known to

287interact with GABA neurotransmission by influencing the

288synthesis, secretion, and recapture of this neurotransmitter.

289Indeed, when rat hippocampal slices are deprived of oxy-

290gen and glucose, GABA levels increase rapidly and then

291normalize within 15 min of reoxygenation (Radomski and

292Watson 1973; Schwartz-Bloom and Sah 2001). Finally,

293oxygen acts on the production of ammonia (NH3) by des-

294amination of catecholamines, tending to decrease the

295cerebral concentration of GABA (Banister and Singh

2961981). The consequence of all these mechanisms could be

297among others an increased inhibition of the inhibitory

298cerebral pathways.

299These mechanisms have been studied in hyperbaric

300hyperoxia, and are able to provoke ‘‘hyperoxic’’ seizures

301as a result of imbalance between glutaminergic and

302GABAergic synaptic function (Demchenko and Piantad-

303osi 2006). However, even in ‘‘normobaric hyperoxia’’

304(PpO2 B1 ATA) this effect can be measured (Zhang

305et al. 1993). Abraini et al. (2003) have also emphasize

306the possible significant role of GABA (A) receptor as their

307results support a selective antagonism of the narcotic

308action of nitrogen.

309The CFFF measurements, before and after oxygen

310breathing in non-divers, seem to confirm the effect of

311oxygen on cerebral arousal. CFFF increased by almost

31225 % compared to baseline measurements. This same

313effect could be responsible for the increased CFFF

314observed in the beginning of the dive. While at 33 mfw

315depth, divers breathing air actually breathe a gas with a

316PpO2 of 0.9 ATA (Dalton’s Law: 21 % 9 4.3 ATA),

317which is almost equivalent to breathing pure oxygen at

318surface. It could also be a good explanation for the effect of

319post-dive oxygen breathing, as the increase from the CFFF

320at 30 min post-dive is also 24.4 %. Although an acceler-

321ated nitrogen washout (denitrogenation) effect cannot for-

322mally be excluded, the similarity in CFFF increase is

323striking.
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324 Moreover, the progressive reduction of the CFFF in the

325 course of the dive seems to suggest a competition between

326 the effect of oxygen and the effect of nitrogen. With time at

327 depth, brain nitrogen concentrations increase up to a suf-

328 ficient level within the effect-site and narcosis sets in, as

329 measured by the reduction of CFFF after 15 min into the

330 dive. Upon return to surface, blood nitrogen concentrations

331 return to baseline, but the persistent reduction of CFFF

332 shows that that the narcotic effects dissipate only slowly.

333 Breathing oxygen after surfacing again decreases the

334 inhibitory pathways, restoring CFFF to a supra-normal

335 level.

336 Although these phenomena are quite complex, this

337 study, carried out in real diving condition, provides an

338 objective and reproducible measurement and makes it

339 possible to suggest some conclusions, namely that nitrogen

340 narcosis seems indeed to depend partly on a gas-protein

341 interaction and that the system seems to be adaptive. Fur-

342 ther studies may shed more light on the complex phe-

343 nomena involved in the functional changes of the nervous

344 system in the diving environment.

345
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