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Abstract Recent satellite observations of the Antarctic and Greenland ice
sheets show accelerated ice flow and associated ice sheet thinning along coastal
outlet glaciers in contact with the ocean. Both processes are the result of
grounding line retreat due to melting at the grounding line (the grounding
line is the contact of the ice sheet with the ocean, where it starts afloat and
forms an ice shelf or ice tongue). Such rapid ice loss is not yet included in
large-scale ice sheet models used for IPCC projections, as most of the complex
processes are poorly understood.

Here we report on the state-of-the art of grounding line migration in marine
ice sheets and address different ways in which grounding line migration can be
attributed and represented in ice sheet models. Using one-dimensional ice flow
models of the ice sheet/ice shelf system we carried out a number of sensitivity
experiments with different spatial resolutions and stress approximations. These
are verified with semi-analytical steady state solutions. Results show that in
large-scale finite-difference models, grounding line migration is dependent on
the numerical treatment (e.g. staggered/non-staggered grid) and the level of
physics involved (e.g. shallow-ice/shallow-shelf approximation).

Keywords Marine ice sheet instability · Grounding line · Ice sheet modeling ·
West Antarctic ice sheet

1 Introduction

The West Antarctic Ice Sheet (WAIS) is currently losing ice at a considerable
rate (Rignot et al, 2008; Chen et al, 2009; Velicogna, 2009; Rignot et al, 2011).
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Pine Island (PIG) and Thwaites Glaciers, situated in the Amundsen Sea Em-
bayment, are the main contributors to this WAIS mass loss (Shepherd et al,
2001). PIG in particular has shown a nearly continuous acceleration (Joughin
et al, 2003) and thinning (Wingham et al, 2009) during recent years. Recent
evidence shows that this thinning is due to an inland grounding line migration
from the 1970s to present by 30 km (Jenkins et al, 2010).

Due to its marine configuration, i.e. its bedrock mostly lying below sea
level, the stability of the WAIS has been a subject of much debate. Marine
ice sheet stability is mostly controlled by the dynamics of the grounding line,
i.e. the junction between the grounded ice sheet and the floating ice shelf.
This junction marks the change from inland ice sheet flow, dominated by
vertical shear and basal friction, toward ice shelf flow, dominated by longi-
tudinal stresses, and which is quintessential in understanding grounding line
dynamics. Weertman (1974) and Thomas and Bentley (1978) proposed that
ice discharge through the grounding line should increase with ice thickness.
Therefore, a marine ice sheet lying on an upward-sloping bed (toward the
ocean), such as WAIS, is unstable. A slight retreat in grounding line position
could therefore lead to an increase in ice thickness, hence increased ice dis-
charge at the grounding line. Ice sheet thinning is then initiated and further
retreat of the grounding line potentially occurs.

Hindmarsh (1993, 1996) argued that ice shelves should have a limited im-
pact on ice sheet dynamics, and that grounding line migration is governed by
grounded ice flux. He advocated the concept of neutral equilibrium, i.e., that
a perturbation in grounding line position should not lead to unstable retreat
or advance for a foredeepened or upward-sloping bed, nor to a return to the
original grounding line position for a downward-sloping bed.

However, Schoof (2007a,b) re-confirmed the instability hypothesis formu-
lated by Weertman (1974) and Thomas and Bentley (1978), on the basis of
a boundary layer theory for the ice sheet / ice shelf transition. He demon-
strated that (i) marine ice sheets do not exhibit neutral equilibrium, but have
well-defined, discrete equilibrium profiles; (ii) steady grounding lines cannot
be stable on upward-sloping beds; (iii) marine ice sheets with overdeepened
beds can undergo hysteresis under variations in sea level, accumulation rate,
basal slipperiness and ice viscosity. Robison et al (2009) confirmed the stabil-
ity of the grounding line on a downward bed slope comparing fluid-mechanical
experiments and model results (with time-dependent evolution of the ground-
ing line), while Durand et al (2009a) demonstrated the instability of marine
ice sheets on upsloping beds with a Full Stokes (Elmer/Ice) model.

The aim of this paper is to address the state-of-the-art of modeling the
processes affecting marine ice sheet stability and grounding line migration. To
this end, we give an overview of different numerical approaches and approx-
imations used in ice sheet models. A description is given for a simple model
that copes with grounding line migration in a parameterized way. Numerical
experiments are carried out to investigate the aspects of grid resolution and
the time-dependent behavior and a discussion is given on the appropriate use
of approximations and numerical approaches in large-scale ice sheet models.
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2 Grounding line models: an overview

2.1 Numerical approaches

There are several numerical approaches in ice sheet models to simulate ground-
ing line migration: fixed grid (FG), moving grid (MG) and adaptive techniques.
They essentially differ in the way grounding lines are represented. The major-
ity of models make use of the flotation criterion to separate grounded and
floating ice:

ρih = ρw(zsl − b) , (1)

where ρi and ρw are ice and water densities respectively, h is the ice thickness,
zsl is the sea level elevation, b is the bedrock elevation. In FG models, the
grounding line position is not defined explicitly but must fall between grid
points where ice is grounded and floating. Large-scale ice sheet models (Huy-
brechts, 1990; Ritz et al, 2001) use this strategy to simulate grounding line
migration. Moving grid (MG) models allow the grounding line position to be
followed continuously, i.e., the grounding line coincides exactly with a grid
point (Hindmarsh, 1996; Hindmarsh and Le Meur, 2001).

Vieli and Payne (2005) showed that there is a strong dependency of FG
models on numerics, that – when perturbed – FG models exhibit large changes
in grounding line migration, and that these changes are irreversible. Con-
versely, for MG models, changes in grounding line position are generally small
and reversible. However, the models based on shallow-ice approximation used
by Vieli and Payne lack a second independent boundary condition that is
needed to accurately represent grounding line migration (see below; Schoof,
2007a; Durand et al, 2009a), and although MG models generally produce more
consistent results, a major drawback remains the complexity to implement in
a three-dimensional ice sheet model (Vieli and Payne, 2005).

Adaptive models are a trade-off between FG and MG models. Durand et al
(2009a) used the finite element code Elmer/Ice to couple the Stokes equations
with the evolution of two free surfaces, i.e., the upper interface (air/ice) and
the bottom interface (ice/bed or ice/sea). They applied a mesh refinement
around the grounding line. With this method, the total number of nodes is
constant and only the horizontal distribution of the nodes is modified. Durand
et al (2009a) need a grid size below 100 m at the grounding line in order to
achieve consistent results.

Goldberg et al (2009) used adaptive refinement, i.e. cells are divided into
smaller cells where extra resolution is required and groups of cells are coarsened
into larger cells in regions where lower resolution suffices. The grounding line
is represented either as lying at the boundary between entirely grounded and
entirely floating cells or by interpolating the flotation condition between grid
lines according to Pattyn et al (2006) (cells can be partially grounded in the
latter case). Goldberg et al (2009) found that buttressing was not always
sufficient to stabilize an ice sheet, but the collapse of the grounded portion
was greatly delayed.
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Katz and Worster (2010) presented a theory for grounding line dynamics
in three spatial dimensions. Although they incorporated internal shear and
membrane stresses, a Newtonian viscosity was used and basal sliding neglected.
They also used the 2D ice shelf proposed by Robison et al (2009), which is
valid only when the grounding line position is independent of the transverse
direction.

Finally, FG models can be adapted in such a way that sub-grid grounding
line position and migration can be achieved through local interpolations and
approximations. Pattyn et al (2006) determined grounding line position at
sub-grid resolution using the flotation criterion (1) and applied a basal friction
function to mimic in a continuous way the transition zone between ice sheet
and ice shelf. Gladstone et al (2010) used several interpolation schemes in
combination with locally increased resolution to suit the same purpose.

2.2 Physical approximations

2.2.1 Linear momentum

The flow of an ice body is described by the linear momentum balance equation:

ρi
dv

dt
= ∇ · τ + ρig , (2)

where v is the velocity field, τ is the Cauchy stress tensor, and g is the
gravitational acceleration. Neglecting acceleration terms and considering the
gravitational acceleration only important in the vertical direction, we can write
(2) in its component form (where x is the flow direction, y is the direction
perpendicular to the flow and z is the vertical direction, positively upward):

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= 0 , (3)

∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

= 0 , (4)

∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

= ρig . (5)

Full Stokes (FS) models (Durand et al, 2009a,b) solve the full system of
linear momentum equations. Due to the considerable computational effort, ap-
proximations to these equations are often used, such as higher-order, shallow-
shelf and shallow-ice approximations. They involve dropping terms from the
momentum balance equations and simplifying the strain rate definitions.

Higher-order models (HOM) consider the hydrostatic approximation in
the vertical direction by neglecting vertical resistive stresses, so that the linear



5

momentum can be written (Herterich, 1987; Blatter, 1995; Pattyn, 2003):

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= 0 , (6)

∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

= 0 , (7)

∂τzz
∂z

= ρig . (8)

A further approximation, known as the shallow-shelf approximation (SSA), is
obtained by neglecting vertical shear (MacAyeal, 1992; MacAyeal et al, 1996).
This is valid for ice shelves and ice streams characterized by a low basal drag:

∂τxx
∂x

+
∂τxy
∂y

= 0 , (9)

∂τyx
∂x

+
∂τyy
∂y

= 0 , (10)

∂τzz
∂z

= ρig . (11)

For ice streams, an extra basal boundary condition is added, i.e., τb = β2u,
where τb is the basal shear stress, β2 is a friction parameter, and u is the
horizontal velocity (β2 = 0 in ice shelves). The basal sliding law can also take
a nonlinear form (see below).

The most common approximation is the shallow-ice approximation (SIA).
This approximation incorporates only vertical shear stresses, which is valid for
an ice mass with a small aspect ratio (i.e. thickness scale much smaller than
length scale) :

∂τxz
∂z

= ρig
∂s

∂x
,

∂τyz
∂z

= ρig
∂s

∂y
, (12)

where s is the surface elevation. Its main advantage is that all stress and
velocity components are locally determined. However, the approximation is
not valid for key areas such as ice divides and grounding lines (Hutter, 1983;
Baral et al, 2001).

2.2.2 Transition zones

Besides being the limit of flotation, a grounding line is also the change from a
shear-dominated ice flow to an ice flow dominated by longitudinal stretching.1

The transition is never sharp, but gradual, and knowing the size of this tran-
sition zone is essential in understanding grounding line dynamics and inland
ice response to sudden changes at the grounding line.

Herterich (1987) calculated the flow within a small transition zone, where
the grounded ice sheet is frozen to the bed. The length of the transition zone

1 This is less valid in the case of an ice stream, where upstream of the grounding line
longitudinal stress gradients may be dominant
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was found to be of the order of the ice thickness and increased when basal
sliding was incorporated. However, the geometry of these experiments was
fixed (i.e. no change of the free surface) and the results obtained strongly
dependent on this assumption.

Therefore, Lestringant (1994) took in account free-surface changes us-
ing a mixed2 finite-element method to solve the flow equations within two-
dimensional sharp transition zones. He concluded that it was impossible to
use reduced Stokes equations in the transition zone and that the ice sheet
and ice shelf could be linked by a jump-boundary condition for the horizontal
velocity. However, he assumed no drag effect coming from the sides, which
means that the ice shelf does not affect the upstream flow.

Similar conclusions were reached by Pattyn (2000), using a two-dimensional
flowline model on a fixed finite-difference grid in order to evaluate the impact
of model resolution on ice dynamics near the grounding line. He demonstrated
that the transition zone is smaller than the grid size at coarse resolutions (i.e.
grid sizes of 20–40 km). At finer resolutions, the transition zone is larger than
the grid size, and hence all stress components should be considered. As shown
by Pattyn et al (2006), the transition zone length scale is roughly inverse to
basal friction as 0 < β2 < +∞. Marine ice sheets with large transition zones
(low β2 values), such as ice streams, seem highly sensitive to perturbations
at the grounding line or reduction in buttressing compared to ice sheets with
small transition zones (high β2).

Hindmarsh (2004) presented a computational analysis of the accuracy of
different approximations to the Stokes equations. He showed that the inclusion
of longitudinal (or membrane) stresses increases accuracy at smaller wave-
lengths compared with the SIA. From his analysis, two longitudinal stress
schemes, namely L1L2 (a single-layer scheme, i.e. two-dimensional) and LMLa
(a multilayer scheme, i.e. three-dimensional; Pattyn, 2003), are adequate ap-
proximations. LMLa is slightly more accurate than L1L2, but the latter has the
advantage that it needs less computational effort since it is two-dimensional.
Hindmarsh (2006) proposed a boundary layer in these membrane stresses ex-
tending about 10 km from the grounding line.

The flow of an ice sheet or a glacier is an example of free surface thin
film flow, which can be described by two types of models. Lubrication models
are appropriate when shear stresses are dominant in the force balance and
in the absence of wall slip. Conversely, membrane models are used in the
case of dominant normal stresses and rapid wall slip. However, both rapid
and slow slip can occur within the same ice mass (e.g. surges, ice streams).
Therefore, hybrid lubrication/membrane models, such as HOM (Blatter, 1995;
Pattyn, 2003), have been developed. Schoof and Hindmarsh (2010) established
a theory for such hybrid models, what was missing until now. They developed
asymptotic expansions for the solution to the Blatter equations in order to
obtain a depth-integrated model that describes both fast and slow sliding.

2 ‘Mixed’ means that the computed unknowns are the horizontal and vertical velocities
as well as pressure (Lestringant, 1994)
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2.3 Grounding line migration

To accurately capture grounding line migration, it is necessary to resolve the
transition zone at a sufficiently fine resolution. Furthermore, besides the flota-
tion criterion (1), an extra boundary condition is needed, i.e., longitudinal
stresses should be evaluated at both sides of the grounding line. Schoof (2007a)
proposed a semi-analytical solution for the ice flux across the grounding line
qg obeying both boundary conditions:

qg =

[

A(ρig)
n+1(1− ρi/ρw)

n

4nC

]

1
m+1

θ
n

m+1h
m+n+3

m+1

g , (13)

where A is the depth-averaged parameter in Glen’s flow law, n is the Glen’s
flow law exponent, C is the basal sliding parameter, m is the basal sliding
exponent, θ is the buttressing factor (θ = 1 in this study), and hg is the ice
thickness at the grounding line. This implies that ice flux at the grounding
line is sensitive to changes in the ice shelf, contrary to earlier findings by
Hindmarsh (1993).

Pollard and DeConto (2009) incorporated this solution in a numerical ice
sheet model at coarse grid resolution by applying a heuristic rule: if the semi-
analytical derived flux across the actual grounding line qg from (13) is greater
than the modeled flux through the last grounded grid point qi, then qg is
imposed at that grid point. The velocity at the last grounded grid point ui

is calculated by dividing the analytical flux qg by the ice thickness at that
grid point hi (derived from the numerical advection scheme). Otherwise, qg is
imposed one grid point further downstream (i.e. the first floating grid point)
and the velocity at the first floating grid point ui+1 equals the analytical flux
qg divided by the ice thickness there hi+1. The former is usually associated
with grounding line retreat, and the latter usually with grounding line advance
(Fig. 1):

qg > qi : qi = qg or ui =
qg
hi

, (14)

qg < qi : qi+1 = qg or ui+1 =
qg

hi+1

. (15)

The reason why the flux is imposed (and not the velocity) is that the equili-
brated solutions in a finite-difference model have the same property as the
semi-analytical Schoof solutions: namely, that the upstream snowfall inte-
grated from the grounding line to the ice divide equals the flux across the
grounding line. And since the latter is a function of the grounding line ice
thickness (Schoof, 2007a), which in turn depends on the grounding line po-
sition (for a given sea level and bed profile), the equilibrium grounding-line
position is determined by the above balance, and is independent of all other
model dynamics (as long as the model conserved mass).

Both principles (Schoof boundary condition and Pollard and DeConto
heuristic rule) form the base of a simple ice sheet model developed in the
next section.
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3 A simple grounding line model

3.1 Model description

The numerical ice sheet model used here is a one-dimensional (vertically in-
tegrated) finite-difference flowline model. The grounded part is either based
on the shallow-ice approximation (thereby including vertical shear stresses) or
the shallow-shelf model (with inclusion of basal friction, i.e. a so-called L1L2
model). In any case, the floating part is according to the shallow-shelf ap-
proximation. Therefore, two models are used here, namely SIA/SSA (SIA for
the sheet and SSA for the shelf) and SSA (SSA for the whole domain). The
depth-averaged horizontal velocity in the ice sheet is calculated as follows:

u = ub +
2

n+ 2
Ah |τd|

n−1
τd , (16)

where τd = −ρigh∇s is the driving stress (τd ≡ τb in the case of SIA). Basal
velocity ub is derived from a Weertman-type sliding law:

ub = C−

1
m |τd|

1
m

−1
τd . (17)

The shallow-shelf (SSA) model neglects vertical shearing and ice deformation
is dominated by membrane stresses:

4
∂

∂x

{

η
∂u

∂x

}

+ β2ub = ρig
∂s

∂x
, (18)

where

η =
1

2
A

−

1
n

{

∂u

∂x

}

1−n

n

(19)

is the effective viscosity. Due to its depth-integrated nature, it follows that
ub ≡ u in (18). The basal friction parameter β2 is then defined as:

β2 =

{

C|u|m−1 : x < xg

0 : x ≥ xg ,

where xg is the position of the grounding line. A symmetric ice divide is
considered at the upstream boundary:

∂(h+ b)

∂x
= 0 ; u = 0 .

At the downstream boundary (ice shelf/ocean), the longitudinal stress gradient
is balanced by the hydrostatic pressure of the ocean water (Paterson, 1994):

∂u

∂x
= A

[

1

4
ρgh

(

1−
ρi
ρw

)]n

. (20)

The mass conservation equation is integrated along the vertical to obtain the
ice thickness evolution:

∂h

∂t
+

∂(uh)

∂x
= ȧ , (21)
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where ȧ is the accumulation rate.
There are several ways in which grounding line migration can be treated in

a finite-difference model (Gladstone et al, 2010). One way is to determine the
grounding line position xg by linear interpolation between the last grounded
grid point position xi and the first floating point xi+1 using the flotation
criterion expressed in terms of height above flotation h⋆, i.e.

xg = xi −
h⋆
i

∇h⋆
, (22)

where

h⋆
i = bi − zsl + hi

ρi
ρw

, (23)

∇h⋆ =
h⋆
i+1 − h⋆

i

∆x
, (24)

and where ∆x is the grid size. Ice thickness at the grounding line hg is then
linearly interpolated from its known position xg. We enabled grounding line
migration using (13) combined with the Pollard and DeConto heuristic rule
(14) and (15).

3.2 Numerical implementation

The model was implemented on a fixed finite-difference grid, both in a stag-
gered and a non-staggered version. For the staggered model, velocities are
determined between grid points (u-grid), while for the non-staggered version
velocities are calculated on the grid points where the ice sheet geometry is
available (h-grid). The mass conservation equation (21) is discretized using a
semi-implicit scheme and coded as FTCS (forward in time, central in space).
This gives for a staggered and a non-staggered grid, respectively

hi,t+1 +
∆t

2∆x

[

ui+ 1
2
(hi+1,t+1 + hi,t+1)− ui− 1

2
(hi−1,t+1 + hi,t+1)

]

= hi,t + ȧ∆t (25)

hi,t+1 +
∆t

2∆x
[ui+1hi+1,t+1 − ui−1hi−1,t+1] = hi,t + ȧ∆t (26)

where indices i = 1 : N are the grid nodes along the flowline, and index t
denotes time. For the SIA model, (25)–(26) are written as a diffusive equation
(see Huybrechts et al (1996) for a more detailed description and discussion).
However, the combined diffusive-advective equations lead to mass loss across
the grounding line with the non-staggered model, which is not the case with
the staggered model, where mass is always conserved along the whole flowline
irrespective of the physical model (SIA/SSA or SSA). The effect of mass loss
across the grounding line is discussed in Pattyn et al (2006) and has been
shown to have no qualitative impact on grounding line migration.
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3.3 Experiments

Vieli and Payne (2005) showed that marine ice sheet FG models were highly
sensitive to horizontal grid size. Large grid sizes, for instance, prevent ground-
ing line migration. Only small enough grid sizes lead to grounding line advance
(Huybrechts et al, 1998; Vieli and Payne, 2005; Durand et al, 2009b). To test
the grid size sensitivity, we carried out model experiments with different grid
sizes, i.e. 50, 25, 12.5, and 5 km as well as for different physical approximations
(SIA/SSA and SSA) and numerical approaches (staggered and non-staggered
grids). We compared our model results to the semi-analytical solution derived
by Schoof (2007a).

The first experiment is a MISMIP variant3 (Schoof et al, 2007). A steady
state geometry is developed on a linearly downward-sloping bedrock defined
by

b(x) = −100− x , (27)

where b is bedrock elevation (m a.s.l.) and x is distance from the ice divide
(km). Other parameters and constants are given in Table 1. In the standard
experiment, a value for Glen’s flow law parameter of A = 10−25 Pa−n s−1 is
used. A steady state is achieved after ∼40 000 years of integration. Starting
from this steady state configuration (further addressed to as initial state), the
value for A is decreased (increasing viscosity), leading to an advance of the
grounding line. This process is repeated for subsequent changes in A, ranging
from 10−25 to 10−26 in steps of 2 × 10−26, as well as the reverse process
(starting from A = 10−26 and decreasing the viscosity in steps of 2× 10−26).
Each of these step changes takes ∼20 000 years to reach a steady state. What
is referred to below as final state, is the steady state after complete advance
and retreat and for the value of A = 10−25 Pa−n s−1.

The second experiment corresponds to MISMIP Experiment 3a, where a
steady state geometry is allowed to develop on an overdeepened polynomial
bedrock, defined by

b(x) = 729− 2184.8×
( x

750 km

)2

+ 1031.72×
( x

750 km

)4

−

151.72×
( x

750 km

)6

. (28)

The flow parameter A is varied stepwise between 3 × 10−25 and 2.5 × 10−26

Pa−n s−1. Other parameters are similar to those of the previous experiment,
except for the domain length, taken as L = 1800 km and the basal sliding
parameter set to C = 7.624× 106 Pa sm m−m.

In the third experiment, we used the same linearly downward-sloping bed
(27) and same constants as in the first experiment above (Table 1). We started
from an initial steady state ice sheet with A = 10−25 Pa−n s−1. The bulk
viscosity of the ice sheet was increased by setting A = 4 × 10−26 Pa−n s−1,

3 MISMIP: Marine Ice Sheet Model Intercomparison Project; http://homepages.ulb.ac.
be/~fpattyn/mismip/
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Table 1 Constants and parameter settings for the first, third and fourth experiments

Parameter Description Value Unit

ρi Ice density 900 kg m−3

ρw Water density 1000 kg m−3

g Gravitational acceleration 9.8 m s−2

n Glen’s flow law exponent 3
a Accumulation rate 0.3 m a−1

L Domain length 1000 km
C Basal friction coefficient 107 Pa sm m−m

m Basal friction exponent 1/3

leading to a grounding line advance, until a new steady state was reached.
Subsequently, the viscosity was decreased by setting A = 10−25 Pa−n s−1,
invoking a grounding line retreat to the initial state.

A major drawback of the Schoof solution is its validity restricted to steady
state solutions and not to transient states. However, grounding line migration
rate is a major issue when trying to understand marine ice sheet response over
decadal time scales (as needed in IPCC projections). The transient response of
the grounding line should therefore be independent of numerical parameters,
such as grid resolution and time step, and should be coherent with theoretical
developments. Therefore, we performed a fourth experiment to investigate the
time-dependent response by evaluating ice fluxes across the grounding line
with theoretical values (i.e. Schoof solution) and grounding line migration
rate during grounding line advance and retreat for a staggered SSA model.
We used the same setup and parameters as the third experiment above (i.e.
linearly downward-sloping bed), except that we used 5 values of rate factor A
instead of 3 in order to compare the transient behavior with the same viscosity
for the advance and the retreat. These values are respectively 10−25, 4×10−26,
10−26, 4× 10−26 and 10−25 Pa−n s−1.

4 Results

4.1 Effect of grid resolution on steady state grounding line position

4.1.1 Downward-sloping bed

Figure 2 shows the steady state profiles of the ice sheet and ice shelf along the
flowline for both the linearly downward-sloping and the overdeepened bedrock
profiles (staggered SSA model). Grounding line advance is obtained when de-
creasing the value of A, and a retreat is invoked when A is increased to its
initial value. Advance and retreat steady state profiles are hardly discernible,
as both are lying close together. According to theory (Schoof, 2007a), they
should overlap, which defies neutral equilibrium of grounding line positions.
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When analyzing the differences between final (after perturbation of A) and
initial steady state grounding line positions as well as the differences between
final steady state grounding line positions and Schoof semi-analytical solution
for the whole suite of grid resolutions as well as for the different physical
and numerical approximations, it becomes clear that staggered grid models
perform generally well in reproducing advance and retreat of the grounding
line with high accuracy (Table 2). Especially the SSA staggered grid model
displays differences between grounding line positions of the order of meters
to tens of meters, which is a fraction of the grid size. Furthermore, there
is no apparent relation between the accuracy and grid resolution. The same
conclusions can be drawn for the SIA/SSA staggered grid model, albeit that
differences are an order of magnitude larger, but still small compared to the
grid size. The non-staggered grid model, on the contrary, shows the largest
discrepancies in which differences are of the order of magnitude of the grid
size (and therefore decreasing with decreasing grid size). Similar tests were also
performed with staggered SSA and SIA/SSA models that do not include the
Schoof boundary condition (not shown). They also reveal large discrepancies
between the advance and retreat steady state positions and in the majority of
the experiments the grounding line hardly retreats when A is set to its initial
value.

In summary, all staggered grid models that are forced with the Schoof
boundary condition converge to the same steady state grounding line posi-
tion irrespective of the horizontal grid size used. Models that are either non-
staggered or do not include the boundary condition converge only to the same
advance-retreat position for sufficiently small grid sizes, which is considered a
deficiency of fixed grid finite-difference models (Vieli and Payne, 2005; Durand
et al, 2009b; Gladstone et al, 2010). Results also depend on model type, i.e. the
SSA model gives better results (difference between final and initial grounding
line positions is less) compared to SIA/SSA (Table 2).

Even though modeled grounding line position is unique for each set of
parameter values, deviations from the Schoof semi-analytical solution may
occur. These differences decrease with decreasing grid size (Table 2). Since
the Schoof semi-analytical solution is based on boundary layer theory, these
positions do not necessarily have to coincide with the steady state positions
for the different model types, as other physics are involved. Nevertheless, the
difference is not more than a couple of kilometers for the staggered grid models,
since all models are forced with the boundary condition from Schoof (2007a). In
concordance with the above results, SIA/SSA models show a larger deviation
from the Schoof solution and the non-staggered model deviates with several
tens of kilometers.

4.1.2 Overdeepened bed

For an overdeepened bed, multiple steady states occur for the same value of
A as a function of the initial geometry of the ice sheet. This is due to the
fact that no steady states are found on upward-sloping beds (Schoof, 2007a),
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Table 2 Absolute differences between final (after perturbation of A) and initial steady
state grounding line (GL) positions (∆FI = |GLFinal − GLInitial|) and absolute differ-
ences between final steady state GL positions and Schoof semi-analytical solution (∆FS =
|GLFinal −GLSchoof |) as a function of grid size for the SSA staggered grid model, SIA/SSA
staggered grid model and SIA/SSA non-staggered grid model. Instead of performing only
one model run per grid size, we performed a series of model runs for a ‘nominal’ grid size in
which the initial grid size was slightly altered by adding/subtracting 1 or 2 grid points for
the whole flowline, thereby keeping the flowline length constant. Standard deviation (σ) is
indicated in brackets. These results correspond to the third experiment (linearly downward-
sloping bedrock and 3 A values).

Physical Grid Grid size Runs ∆FI (σ) ∆FS (σ)
approx. type (m) (m) (m)

SSA staggered 50000 4 3.17 (3.74) 7020 (3018)
SSA staggered 25000 4 28.01 (38.05) 4567 (1287)
SSA staggered 12500 4 6.54 (9.27) 3194 (793)
SSA staggered 5000 2 0.94 (0.32) 2015 (231)

SIA/SSA staggered 50000 2 127.39 (116.48) 9616 (1405)
SIA/SSA staggered 25000 2 165.26 (36.83) 5750 (476)
SIA/SSA staggered 12500 1 65.57 (0) 2905 (0)

SIA/SSA non-staggered 50000 5 58610 (15388) 73243 (8378)
SIA/SSA non-staggered 25000 5 25901 (7974) 54154 (4602)
SIA/SSA non-staggered 12500 5 8983 (2367) 43904 (2365)
SIA/SSA non-staggered 5000 5 1413 (1144) 37529 (712)

leading to hysteresis (Figures 2b and 2d). In general, conclusions reached in
Section 4.1.1 are also valid here, i.e. initial and final grounding line positions
show differences of the order of meters to tens of meters with the staggered
SSA model, while large deviations – also related to grid size, occur for either
SIA/SSA and non-staggered grid models (not shown).

4.2 Grounding line migration rate

Figure 3 displays the grounding line flux as a function of time during the
advance (Figure 3a) and the retreat (Figure 3b) compared to the flux deter-
mined from (13). Since the value of rate factor A is the same for both advance
and retreat, the ice flux converges towards the same value in Figures 3a and
3b. Both solutions show a series of distinct jumps in time that are mainly
due to the intrinsic discrete nature of the heuristic rule in (14)-(15), which
causes flips between grid points for arbitrarily small changes of ice flux. These
discrete steps cannot be removed despite the interpolating grounding line func-
tion (22). For an advancing ice sheet, the difference between the modeled and
semi-analytical fluxes is relatively small. However, during retreat sudden high
amplitude increases in grounding line flux occur with the SSA model. The
peaks can be visualized in more detail in Figure 3d, where ice fluxes are plot-
ted against grounding line ice thickness. Nevertheless, after these jumps the
modeled fluxes converge toward the fluxes determined from (13). Since the
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Schoof flux given by (13) is valid for steady state conditions and derived from
boundary layer theory, deviations from this semi-analytical flux during a tran-
sient state do not indicate whether the model results are pertinent or not.

A sound way of evaluating grounding line migration rate is to compare
the migration rate obtained with the model with the one calculated from
differentiating the flotation criterion (Hindmarsh, 1993), i.e.

dxg

dt
= −

ȧ− ∂q
∂x

∂h
∂x

+ ρw

ρi

∂b
∂x

(29)

We solved (29) numerically by calculating both the flux divergence and the
thickness gradient with a three-point upstream difference scheme centered on
the sub-grid grounding line position xg (Figures 3e and 3f). A distinction is
made based on the heuristic rule (14) or (15). Circles in the scatterplot corre-
spond to the case where the grounding line flux is larger than the flux obtained
from (13), generally leading to a grounding line advance. Crosses correspond
to the inverse case (grounding line flux smaller than the flux obtained from
(13)). For both advance and retreat experiments, grounding line changes in ei-
ther direction occur, albeit that negative migration rates are generally absent
for the advancing case (Figure 3e).

In general there are many more ‘retreat’ points (crosses) than there are
‘advance’ points (circles). The heuristic rule compares the modeled ice flux
to the theoretical flux and adapts the modeled velocity field accordingly. Any
‘advance’ flux condition will alter the flow field considerably, and result in an
important change in grounding line position as well as in glacier geometry.
However, during the following time steps the flux at the grounding line will be
too low compared to the theoretical one and slight adjustments to the jump
in grounding line position are made (retreat), to compensate for the larger
initial jump. These changes happen evidently on sub-grid level, leading to a
negative migration rate. Therefore, during an advance phase, small ‘retreat’
changes can be observed, simply to counterbalance large changes due to the
imposition of the grounding line flux. This also explains why during an ad-
vance phase small episodes of grounding line retreat can be observed, while
according to theory, this should be zero (Figure 3e). Both Figures 3e and 3f
show that modeled advance rates correspond well with the theoretical value,
but are slightly underestimated, while the modeled retreat rates show a larger
discrepancy, probably related to this so-called counterbalancing effect.

A similar experiment was carried out for a smaller grid size (6.25 km, Fig-
ure 4). The behavior is coherent in the sense that due to the higher resolution,
jumps in grounding line flux occur more often, but they are of smaller am-
plitude. The comparison of modeled grounding line migration rates with the
calculated ones leads to a similar graph as in the previous experiment. Migra-
tion rates are comparable and invariant for the grid size applied, albeit slightly
lower than those determined from (29).
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5 Discussion and Outlook

Representing grounding line migration in numerical ice sheet models remains
an arduous task, not only because of the complexity of the physics involved
(change from shear dominated flow to flow dominated by longitudinal pulling
or stretching), the geometry of the problem (a grounding line is difficult to
identify within a numerical model as it does not always coincides with a grid
node), the computational challenge (solving a complex set of equations on
a high-resolution mesh), but also the difficulty to observe and attribute the
process of grounding line migration due to different interacting mechanisms,
such as sub-shelf melting, loss of buttressing, inland ice flow acceleration due
to basal sliding, ice thinning, etc. All these processes may cause grounding line
retreat, but a number of them are at the same time a result of grounding line
retreat as well, hence leading to a series of feedbacks. Therefore, observations
alone are not sufficient to disentangle the mechanisms involved. Nowadays,
the gap in our understanding has been filled by advances in time-dependent
observations, numerical modeling and tools for model verification.

Only recently the debate on grounding line stability has moved onto the
next level with the mathematical proof on grounding line steady state position
as a function of ice flux and topography (Schoof, 2007a), leading to a verifi-
cation and intercomparison exercise for numerical ice sheet models (Schoof
et al, 2007). In this paper we compared numerical results obtained with sim-
ple ice sheet models against the semi-analytical solutions proposed by Schoof
et al (2007), revealing the necessity of having numerical models with sound
numerical treatments and proper physical approximations. Although the semi-
analytical solution is only valid for steady states, the transient behavior of the
model has been analyzed by different means.

The results presented in this paper are obtained with a couple of simple
ice sheet/ice shelf models that capture the essence of grounding line migration
by including the heuristic rule proposed by Pollard and DeConto (2009). The
latter assures that modeled grounding line positions are in accord with the
steady state grounding line positions given by Schoof (2007a). Ice sheet models
on a staggered grid perform well and lead to high accuracy on steady state
grounding line position (comparing advancing to retreating ice sheets). Non-
staggered grid models lead to larger differences and accuracy increases with
decreasing grid size. This poorer performance may be related to mass loss
occurring at the grounding line while coupling a diffusive with an advective
scheme, as discussed in Pattyn et al (2006).

The time-dependent response of these models remains influenced by the pa-
rameterization scheme of grounding line migration, leading to sudden changes
in grounding line ice flux whenever a jump from one grid point to another
occurs, despite the sub-grid representation of grounding line position in the
model. However, the bulk response in grounding line migration rate is coherent
when compared with those expected from differentiating the flotation criterion
at the grounding line (Hindmarsh, 1993), albeit that modeled migration rates
are generally underestimated.
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A major drawback of the models presented in this paper is their limi-
tation along a flowline. Although buttressing effects can be included in a
parameterized way (Vieli and Payne, 2005; Pattyn et al, 2006), real three-
dimensional effects are lacking. A number of three-dimensional models that
cope with grounding line migration in a verified way have been developed or
are in the process of development (Pollard and DeConto, 2009; Goldberg et al,
2009; Robison et al, 2009; Katz and Worster, 2010), where the Pollard and
DeConto model incorporates the heuristic rule as in the above experiments.
A more detailed comparison with higher-order and Full Stokes models should
be carried out in order to remove any bias towards the use of such types of
models. International efforts, such as ice2sea4 or SeaRISE,5 are pushing the
ice sheet model community to developing better and physically-based numeri-
cal ice sheet models for future sea-level change projections. Once such models
are fully available, a physically-based assessment will be possible, making the
use of selective grounding line migration scenarios obsolete.
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Fig. 1 Fixed grid heuristic rule adapted from Pollard and DeConto (2009).
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Fig. 2 Steady state profiles (solid black curve: advance; dashed gray curve: retreat) of the
ice sheet on a downward-sloping bed (a and c) and on an overdeepened bed (b and d) for
the SSA model on a staggered grid (first and second experiments). Grid size is 12.5 km in
both cases. GL means ‘grounding line’.
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Fig. 3 Modeled grounding line (GL) flux compared to Schoof GL flux as a function of
time (a and b) and GL ice thickness (c and d) (fourth experiment). Modeled GL migration
rate (dxg/dt) is also plotted against GL migration rate given by (29). Left plots show the
advance stage (A decreases from 10−25 to 4× 10−26 Pa−n s−1), while right plots show the
retreat stage (A increases from 10−26 to 4× 10−26 Pa−n s−1). Grid size is 12.5 km.
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Fig. 4 Same as figure 3 with a grid size of 6.25 km.


