Quadrupole transitions in the bound rotational-vibrational spectrum of the hydrogen molecular ion

Horacio Olivares Pilón and Daniel Baye
Physique Quantique C.P. 165/82, and Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels, Belgium
E-mail: dbaye@ulb.ac.be

Abstract

The three-body Schrödinger equation of the H_{2}^{+}hydrogen molecular ion with Coulomb potentials is solved in perimetric coordinates using the Lagrange-mesh method. The Lagrange-mesh method is an approximate variational calculation with variational accuracy and the simplicity of a calculation on a mesh. Energies and wave functions of up to four of the lowest vibrational bound or quasibound states for total orbital momenta from 0 to 40 are calculated. The obtained energies have an accuracy varying from about 13 digits for the lowest vibrational state to at least 9 digits for the third vibrational excited state. With the corresponding wave functions, a simple calculation using the associated Gauss quadrature provides accurate quadrupole transition probabilities per time unit between those states over the whole rotational bands. Extensive results are presented with six significant figures.

PACS numbers: 31.15.Ag, 31.15.Ac, 02.70.Hm, 02.70.Jn

1. Introduction

The H_{2}^{+}bound rotational-vibrational spectrum possesses about 420 bound states corresponding to the Σ_{g} electronic configuration as well as about 60 narrow quasibound levels. For this simple three-body system, the Schrödinger equation involving Coulomb potentials can not be solved exactly but it is possible to reach a high accuracy for both energies and wave functions. A calculation of the energies of most rotational-vibrational bound states and some quasi-bound levels has been performed in 1993 with 11-digit accuracy by Moss [1]. He also calculated energies for the few extended bound Σ_{u} states. Since then, several calculations have reached a higher accuracy, but always for a limited number of bound states. The energy of the ground state, with total orbital momentum $L=0$ and positive parity, has been improved in a number of papers $[2,3,4,5,6,7,8]$ to reach an accuracy around or beyond 30 digits $[7,8]$. The energy of the first $L=0$ excited state has also been improved $[6,8]$. The lowest $L=1$ vibrational state has been considered by several authors [5, 6, 7, 8]. The $L=0$ and 1 excited vibrational states have been studied by Hilico et al [3] (see also [9]). Energies of the full groundstate rotational band were determined with 12-digit accuracy by Hesse and Baye [10] and energies up to $L=12$ with higher accuracy were obtained by Yan and Zhang [11]. Some of the quoted works also provide accurate information on mean radii $[10,8]$ or quadrupole moments [10].

In opposition to this large number of accurate studies, very few studies concern the transition probabilities between the rotational-vibrational bound states of H_{2}^{+}. There are several reasons for this. As the electric dipole transitions are forbidden by the symmetry the two protons, the more complicated electric quadrupole transitions are the dominant mode of decay. Moreover, few existing studies provide the necessary wave functions. Since the pioneering work of Bates and Poots [12], a systematic study of all transitions for states up to $L=20$ within the Born-Oppenheimer approximation has been published with two significant figures [13]. Here we present accurate E2 transition probabilities without Born-Oppenheimer approximation. They are obtained from three-body wave functions calculated with the Lagrange-mesh method in perimetric coordinates $[14,15,10]$, with which the calculation is particularly simple and very precise.

The Lagrange-mesh method is an approximate variational calculation using a basis of Lagrange functions and the associated Gauss quadrature. It has the high accuracy of a variational approximation and the simplicity of a calculation on a mesh. Lagrange functions are N orthonormal infinitely differentiable functions that vanish at all points of this mesh, except one. Used as a variational basis in a quantum-mechanical calculation, the Lagrange functions lead to a simple approximation when matrix elements are calculated with the associated Gauss quadrature. The variational equations take the form of mesh equations with a diagonal representation of the potential only depending on values of this potential at the mesh points $[16,17]$. The most striking property of the Lagrange-mesh method is that, in spite of its simplicity, the obtained energies and
wave functions can be as accurate with the Gauss quadrature approximation as in the original variational method with an exact calculation of the matrix elements [18, 17]. The accuracy of the lowest energies exceeds by far the accuracy of the Gauss quadrature for the individual matrix elements. The Lagrange-mesh method allows very accurate calculations not only in simple quantum-mechanical problems but also in various more complicated applications in atomic [19, 20, 21], molecular [14, 15, 10, 22, 23] and nuclear [24, 25, 26] physics.

In the H_{2}^{+}case, the Lagrange-mesh method is applied in perimetric coordinates, i.e. three angles describing the orientation of the plane containing the particles and three linear combinations of the distances between them [27]. The dependence on the three Euler angles is treated analytically $[15,10]$. The three perimetric coordinates vary from zero to infinity and can easily be discretized on a three-dimensional Lagrange-Laguerre mesh [14]. An additional advantage is that the resulting matrix is rather sparse. The Lagrange-mesh method also provides analytical approximations for the wave functions that lead to very simple expressions for a number of matrix elements when used with the corresponding Gauss-Laguerre quadrature.

In section 2, the basic expressions for the transition probabilities are recalled. The E1 and E2 operators are expressed in perimetric coordinates. Some definitions about Lagrange functions lead to Lagrange-mesh expressions for the transition matrix elements. In section 3, energies are given for the lowest four vibrational states over the full rotational bands and E2 transition probabilities are tabulated. Concluding remarks are presented in section 4 .

2. Lagrange-mesh calculation of transition probabilities

2.1. Oscillator strength and transition probability per time unit

The dimensionless oscillator strength for an electric transition of multipolarity λ between an initial state i and a final state f is defined as [28, 29]

$$
\begin{equation*}
f_{i \rightarrow f}^{(\lambda)}=\frac{m_{e} c}{\hbar} \frac{(2 \lambda+1)(\lambda+1)}{[(2 \lambda+1)!!]^{2} \lambda} k^{2 \lambda-1} \frac{S_{i f}^{(\lambda)}}{2 J_{i}+1} \tag{1}
\end{equation*}
$$

where m_{e} is the electron mass,

$$
\begin{equation*}
k=\frac{\left|E_{f}-E_{i}\right|}{\hbar c} \tag{2}
\end{equation*}
$$

is the photon wavenumber and

$$
\begin{equation*}
\left.S_{i f}^{(\lambda)}=S_{f i}^{(\lambda)}=\sum_{M_{i} M_{f} \mu}\left|\left\langle\gamma_{i} J_{i} M_{i}\right| O_{\mu}^{(\lambda)}\right| \gamma_{f} J_{f} M_{f}\right\rangle\left.\right|^{2}=\left|\left\langle\gamma_{i} J_{i}\left\|O^{(\lambda)}\right\| \gamma_{f} J_{f}\right\rangle\right|^{2}, \tag{3}
\end{equation*}
$$

where $J_{i, f}$ is a total angular momentum, $M_{i, f}$ is its projection, $\gamma_{i, f}$ represents the other quantum numbers and the reduced matrix element is defined according to [30]. The transition irreducible tensor operator is given in units of e by

$$
\begin{equation*}
O_{\mu}^{(\lambda)}=\sum_{i} Z_{i} r_{i}^{\prime \lambda} C_{\mu}^{(\lambda)}\left(\Omega_{i}^{\prime}\right) \tag{4}
\end{equation*}
$$

where $\boldsymbol{r}_{i}^{\prime}=\boldsymbol{r}-\boldsymbol{R}_{\text {c.m. }}$ is the relative coordinate of particle i with respect to the center of mass, Z_{i} is its charge in units of e and $C_{\mu}^{(\lambda)}(\Omega)=\sqrt{4 \pi /(2 \lambda+1)} Y_{\mu}^{(\lambda)}(\Omega)$. Notice that the charge unit e is included in the coefficient in $f_{i \rightarrow f}^{(\lambda)}$. One has

$$
\begin{equation*}
f_{f \rightarrow i}^{(\lambda)}=\frac{2 J_{i}+1}{2 J_{f}+1} f_{i \rightarrow f}^{(\lambda)} . \tag{5}
\end{equation*}
$$

If atomic units are used, the oscillator strength reads

$$
\begin{equation*}
f_{i \rightarrow f}^{(\lambda)}=\frac{(2 \lambda+1)(\lambda+1)}{[(2 \lambda+1)!!]^{2} \lambda} \alpha^{2 \lambda-2}\left(E_{f}-E_{i}\right)^{2 \lambda-1} \frac{S_{i f}^{(\lambda)}}{2 J_{i}+1} \tag{6}
\end{equation*}
$$

where α is the fine-structure constant.
The transition probability per time unit for $E_{f}<E_{i}$ is given in atomic units (the atomic unit of time is $a_{0} / \alpha c \approx 2.4188843 \times 10^{-17} \mathrm{~s}$) by

$$
\begin{equation*}
W_{i \rightarrow f}^{(\lambda)}=\frac{2(\lambda+1)(2 \lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \alpha^{2 \lambda+1}\left(E_{i}-E_{f}\right)^{2 \lambda+1} \frac{S_{i f}^{(\lambda)}}{2 J_{i}+1} \tag{7}
\end{equation*}
$$

where all quantities are in a.u. For any multipolarity λ, the transition probability is related to the oscillator strength by

$$
\begin{equation*}
W_{i \rightarrow f}^{(\lambda)}=2 \alpha^{3}\left(E_{i}-E_{f}\right)^{2} f_{i \rightarrow f}^{(\lambda)} . \tag{8}
\end{equation*}
$$

2.2. Dipole and quadrupole operators in perimetric coordinates

After elimination of the centre-of-mass motion, the Hamiltonian depends on the two Jacobi coordinates \boldsymbol{R} of proton 2 with respect to proton 1 and \boldsymbol{r} of the electron with respect to the centre of mass of both protons. These coordinates can be expressed as three Euler angles (ψ, θ, ϕ) defining the orientation of the triangle formed by the three particles, and three internal coordinates describing the shape of this triangle. The θ and ψ angles correspond to the angular spherical coordinates of vector $\boldsymbol{R}=(R, \theta, \psi)$ and the ϕ angle is the angular cylindrical coordinate of vector $\boldsymbol{r}=(\rho, \zeta, \phi)$ in the relative frame where the z-axis is moved along \boldsymbol{R} by ψ and θ rotations [31]. For the internal degrees of freedom we use the perimetric coordinates (x, y, z) defined as linear combinations of interparticle distances [27],

$$
\begin{align*}
& x=R-r_{e 2}+r_{e 1}, \\
& y=R+r_{e 2}-r_{e 1}, \tag{9}\\
& z=-R+r_{e 2}+r_{e 1},
\end{align*}
$$

where $r_{e 1}$ and $r_{e 2}$ are the distances between the electron and protons 1 and 2, respectively. The domains of variation of these six variables are $[0,2 \pi]$ for ψ and ϕ, $[0, \pi]$ for θ and $[0, \infty[$ for x, y and z.

In the body-fixed frame, the radial component of \boldsymbol{R} and the polar and axial components of \boldsymbol{r} are expressed in perimetric coordinates (9) as $[15,10]$

$$
\begin{equation*}
R=\frac{x+y}{2}, \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \rho=\sqrt{\frac{x y z(x+y+z)}{(x+y)^{2}}} \tag{11}\\
& \zeta=\frac{(x-y)(2 z+x+y)}{4(x+y)} . \tag{12}
\end{align*}
$$

For H_{2}^{+}, the dipole tensor operator reads in Jacobi coordinates,

$$
\begin{equation*}
d_{\mu}^{(1)}=-\left(1+\frac{m_{e}}{M}\right) r_{\mu}^{(1)} \tag{13}
\end{equation*}
$$

where $M=2 m_{p}+m_{e}$ is the total mass of the molecular ion. This operator changes sign under space reflection (odd operator). It is invariant under the permutation of the protons. The tensor components of \boldsymbol{r} can be written as a function of the Euler angles (ψ, θ, ϕ) as

$$
\begin{equation*}
r_{\mu}^{(1)}=\zeta D_{\mu 0}^{1}(\psi, \theta, \phi)+\frac{\rho}{\sqrt{2}}\left[D_{\mu 1}^{1}(\psi, \theta, \phi)-D_{\mu-1}^{1}(\psi, \theta, \phi)\right] . \tag{14}
\end{equation*}
$$

In both terms, the Wigner matrices change sign under space reflection [15] while ζ and ρ remain unchanged. With respect to proton exchange [15], ζ and $D_{\mu 0}^{1}$ are both odd while ρ and $D_{\mu 1}^{1}-D_{\mu-1}^{1}$ are both even.

In the Jacobi coordinate system, the E2 tensor operator reads

$$
\begin{equation*}
Q_{\mu}^{(2)}=\sqrt{\frac{3}{2}}\left\{\frac{1}{2}\left[R^{(1)} \otimes R^{(1)}\right]_{\mu}^{(2)}-\gamma\left[r^{(1)} \otimes r^{(1)}\right]_{\mu}^{(2)}\right\} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=1-\frac{2 m_{e}}{M}-\frac{m_{e}^{2}}{M^{2}} \tag{16}
\end{equation*}
$$

In perimetric coordinates, it becomes

$$
\begin{align*}
& Q_{\mu}^{(2)}=\frac{1}{2}\left[R^{2}-\gamma\left(2 \zeta^{2}-\rho^{2}\right)\right] D_{\mu 0}^{2}(\psi, \theta, \phi)-\sqrt{\frac{3}{2}} \gamma \zeta \rho\left[D_{\mu 1}^{2}(\psi, \theta, \phi)-D_{\mu-1}^{2}(\psi, \theta, \phi)\right] \\
&-\sqrt{\frac{3}{8}} \gamma \rho^{2}\left[D_{\mu 2}^{2}(\psi, \theta, \phi)+D_{\mu-2}^{2}(\psi, \theta, \phi)\right] \tag{17}
\end{align*}
$$

Operator $Q_{\mu}^{(2)}$ is even with respect to parity and to permutation.

2.3. Transition matrix elements

The three-body Hamiltonian that we consider involves Coulomb forces between the particles but no spin-dependent forces. Hence the total orbital momentum L and parity π are good quantum numbers corresponding to constants of motion. The wave functions with orbital momentum L and parity π are expanded as [10]

$$
\begin{equation*}
\Psi_{M}^{\left(L^{\pi}\right) \sigma}=\sum_{K=0}^{L} \mathcal{D}_{M K}^{L \pi}(\psi, \theta, \phi) \Phi_{K}^{\left(L^{\pi}\right) \sigma}(x, y, z) \tag{18}
\end{equation*}
$$

In practice, the sum can be truncated at some value $K_{\max }$. The normalized angular functions $\mathcal{D}_{M K}^{L \pi}(\psi, \theta, \phi)$ are defined for $K \geq 0$ by

$$
\begin{align*}
\mathcal{D}_{M K}^{L \pi}(\psi, \theta, \phi)= & \frac{\sqrt{2 L+1}}{4 \pi}\left(1+\delta_{K 0}\right)^{-1 / 2}\left[D_{M K}^{L}(\psi, \theta, \phi)\right. \\
& \left.+\pi(-1)^{L+K} D_{M-K}^{L}(\psi, \theta, \phi)\right] \tag{19}
\end{align*}
$$

where $D_{M K}^{L}(\psi, \theta, \phi)$ represents a Wigner matrix element. They have parity π and change as $\pi(-1)^{K}$ under permutation of the protons. Hence $\Phi_{K}^{\left(L^{\pi}\right) \sigma}$ is symmetric for $(-1)^{K}=\sigma \pi$ and antisymmetric for $(-1)^{K}=-\sigma \pi$, when x and y are exchanged. Most bound states belong to the Σ_{g} band where $K=0$ dominates and σ is equal to π.

Since the symmetry of the proton spin part is $(-1)^{S+1}$ where S is the total spin of the protons, physical states (i.e. states antisymmetric with respect to the exchange of the protons) have $\sigma=(-1)^{S}$. In the Σ_{g} rovibrational band, states have natural parity, $\pi=\sigma=(-1)^{L}$. Even- L states have positive parity and $\sigma=+1$. The protons are thus in a singlet state and the total intrinsic spin of the molecule is $1 / 2$. Odd- L states have negative parity and $\sigma=-1$. The protons are in a triplet state and the total intrinsic spin of the molecule is $1 / 2$ or $3 / 2$. E1 transitions are forbidden because of different proton symmetries when $\Delta L=1$. However, they are possible from the three weakly bound states of the Σ_{u} band where $\pi=\sigma=(-1)^{L+1}$. E2 transitions are possible within the Σ_{g} rovibrational band for $\Delta L=0, \pm 2$. Such states have the same parity and symmetry.

Using the property

$$
\begin{equation*}
\left\langle D_{M^{\prime} K^{\prime}}^{L^{\prime}}\right| D_{\mu \kappa}^{\lambda}\left|D_{M K}^{L}\right\rangle=\frac{8 \pi^{2}}{2 L^{\prime}+1}\left(L \lambda M \mu \mid L^{\prime} M^{\prime}\right)\left(L \lambda K \kappa \mid L^{\prime} K^{\prime}\right), \tag{20}
\end{equation*}
$$

one can write for $\kappa \geq 0$,

$$
\begin{align*}
F_{K K^{\prime} ; \kappa}^{L L^{\prime} ; \lambda} & =\left\langle\mathcal{D}_{M^{\prime} K^{\prime}}^{L^{\prime}}\right| D_{\mu \kappa}^{\lambda}+(-1)^{\kappa} D_{\mu-\kappa}^{\lambda}\left|\mathcal{D}_{M K}^{L \pi}\right\rangle \\
& =\frac{(2 L+1)^{1 / 2}}{\left[\left(2 L^{\prime}+1\right)\left(1+\delta_{K^{\prime} 0}\right)\left(1+\delta_{K 0}\right)\right]^{1 / 2}}\left(L \lambda M \mu \mid L^{\prime} M^{\prime}\right) \\
& \times\left\{\left(L \lambda K \kappa \mid L^{\prime} K^{\prime}\right)+(-1)^{\kappa}\left(L \lambda K-\kappa \mid L^{\prime} K^{\prime}\right)\right. \\
& \left.+\pi^{\prime}(-1)^{L^{\prime}+K^{\prime}}\left[\left(L \lambda K \kappa \mid L^{\prime}-K^{\prime}\right)+(-1)^{\kappa}\left(L \lambda K-\kappa \mid L^{\prime}-K^{\prime}\right)\right]\right\} . \tag{21}
\end{align*}
$$

The reduced matrix elements of the operators $Q_{\mu}^{(2)}$ between initial and final states $\Psi_{M_{i}}^{i\left(L_{i}^{i_{i}}\right) \sigma_{i}}$ and $\Psi_{M_{f}}^{f\left(L_{f}^{\pi_{f}}\right) \sigma_{f}}$ can be written as

$$
\begin{equation*}
\left\langle\Psi^{f\left(L_{f}^{\pi_{f}}\right) \sigma_{f}}\left\|Q^{(2)}\right\| \Psi^{i\left(L_{i}^{\pi_{i}}\right) \sigma_{i}}\right\rangle=\sum_{K_{i} K_{f}} \sum_{\kappa=0}^{2}\left(1+\delta_{\kappa 0}\right)^{-1} F_{K_{i} K_{f} ; K_{i}}^{L_{i} L_{f} ; 2} A_{K_{i} K_{f} ; \kappa}^{L_{i} L_{f}} \tag{22}
\end{equation*}
$$

where the perimetric matrix elements

$$
\begin{equation*}
A_{K_{i} K_{f} ; \kappa}^{L_{i} L_{f}}=\left\langle\Phi_{K_{f}}^{f\left(L_{f}^{\pi_{f}}\right) \sigma_{f}}\right| \mathcal{A}_{\kappa}\left|\Phi_{K_{i}}^{i\left(L_{i}^{\pi_{i}}\right) \sigma_{i}}\right\rangle \tag{23}
\end{equation*}
$$

are calculated by integration over the perimetric coordinates with the volume element $(x+y)(y+z)(z+x) d x d y d z$ and, from (17),

$$
\begin{equation*}
\mathcal{A}_{0}=\frac{1}{2}\left[R^{2}-\gamma\left(2 \zeta^{2}-\rho^{2}\right)\right], \quad \mathcal{A}_{1}=-\sqrt{\frac{3}{2}} \gamma \zeta \rho, \quad \mathcal{A}_{2}=-\sqrt{\frac{3}{8}} \gamma \rho^{2} \tag{24}
\end{equation*}
$$

with R, ρ and ζ replaced by their expressions (10)-(12). With (3) and (22), the oscillator strength is given explicitly for transitions between natural-parity states $\pi_{i, f}=(-1)^{L_{i, f}}$ by

$$
S_{i f}^{(2)}=\left(2 L_{i}+1\right) \mid \sum_{K_{i} K_{f}}\left\{C_{K_{i} 0 K_{f}}^{L_{i} 2 L_{f}} A_{K_{i} K_{f} ; 0}^{L_{i} L_{f}}\right.
$$

$$
\begin{gather*}
+\left[C_{K_{i} 1 K_{f}}^{L_{i} 2 L_{f}}\left(1+\delta_{K_{i} 0}\right)^{1 / 2}-C_{K_{i}-1 K_{f}}^{L_{i} 2 L_{f}}\left(1+\delta_{K_{f} 0}\right)^{1 / 2}\right] A_{K_{i} K_{f} ; 1}^{L_{i} L_{f}} \\
\left.+\left[C_{K_{i} 2 K_{f}}^{L_{i} 2 L_{f}}\left(1+\delta_{K_{i} 0}\right)^{1 / 2}+C_{K_{i}-2 K_{f}}^{L_{i} 2 L_{f}}\left(1+\delta_{K_{f} 0}\right)^{1 / 2}-C_{2-11}^{L_{i} 2 L_{f}} \delta_{K_{i} 1} \delta_{K_{f} 1}\right] A_{K_{i} K_{f} ; 2}^{L_{i} L_{f}}\right\}\left.\right|^{2} \tag{25}
\end{gather*}
$$

where the Clebsch-Gordan coefficients are written as $C_{K_{i} \mu K_{f}}^{L_{i} \lambda L_{f}}=\left(L_{i} \lambda K_{i} \mu \mid L_{f} K_{f}\right)$ and the sums over K_{i} and K_{f} are truncated at $K_{\max }$ in practice. The remaining calculation of the matrix elements $A_{K_{i} K_{f} ; \kappa}^{L_{i} L_{f}}$ is particularly simple within the Lagrange-mesh method as shown in the next subsection.

2.4. Lagrange-mesh method

The three-dimensional Lagrange functions $F_{i j k}^{K}(x, y, z)$ are infinitely differentiable functions defined by

$$
\begin{equation*}
F_{i j k}^{K}(x, y, z)=\mathcal{N}_{K i j k}^{-1 / 2} \mathcal{R}_{K}(x, y, z) f_{i}^{N_{x}}\left(x / h_{x}\right) f_{j}^{N_{y}}\left(y / h_{y}\right) f_{k}^{N_{z}}\left(z / h_{z}\right) . \tag{26}
\end{equation*}
$$

The one-dimensional Lagrange-Laguerre functions f_{i}^{N} are given by

$$
\begin{equation*}
f_{i}^{N}(u)=(-1)^{i} u_{i}^{1 / 2} \frac{L_{N}(u)}{u-u_{i}} e^{-u / 2} \tag{27}
\end{equation*}
$$

where $L_{N}(u)$ is the Laguerre polynomial of degree N and u_{i} is one of its zeros, i.e. $L_{N}\left(u_{i}\right)=0$. They vanish at all u_{j} with $j \neq i$. Basis (26) is exactly equivalent to the set of functions $\mathcal{R}_{K}(x, y, z) L_{n_{x}}\left(x / h_{x}\right) L_{n_{y}}\left(y / h_{y}\right) L_{n_{z}}\left(z / h_{z}\right) \exp \left[-\left(x / 2 h_{x}\right)-\left(y / 2 h_{y}\right)-\left(z / 2 h_{z}\right)\right]$ with $n_{x, y, z}=0$ to $N_{x, y, z}-1$. The mesh points $\left(h_{x} u_{p}, h_{y} v_{q}, h_{z} w_{r}\right)$ correspond to the zeros u_{p}, v_{q}, w_{r} of Laguerre polynomials of respective degrees N_{x}, N_{y}, N_{z}. Three scale parameters h_{x}, h_{y}, h_{z} are introduced in (26) in order to fit the different meshes to the size of the actual physical problem. The function $\mathcal{R}_{K}(x, y, z)$ is a regularization factor introduced because of the presence of singularities in the Hamiltonian operator when L differs from zero $[15,10]$. It is equal to 1 when $K=0$ and to $\sqrt{x y z(x+y+z)}$ otherwise. The normalization factor $\mathcal{N}_{\text {Kijk }}$ is defined as

$$
\begin{equation*}
\mathcal{N}_{K i j k}=h_{x} h_{y} h_{z}\left(h_{x} u_{i}+h_{y} v_{j}\right)\left(h_{x} u_{i}+h_{z} w_{k}\right)\left(h_{y} v_{j}+h_{z} w_{k}\right) \mathcal{R}_{K i j k}^{2} \tag{28}
\end{equation*}
$$

where $\mathcal{R}_{K i j k}=\mathcal{R}_{K}\left(h_{x} u_{i}, h_{y} v_{j}, h_{z} w_{k}\right)$.
The functions $F_{i j k}^{K}(x, y, z)$ satisfy the Lagrange property with respect to the threedimensional mesh $\left(h_{x} u_{p}, h_{y} v_{q}, h_{z} w_{r}\right)$, i.e. they vanish at all mesh points but one,

$$
\begin{equation*}
F_{i j k}^{K}\left(h_{x} u_{p}, h_{y} v_{q}, h_{z} w_{r}\right)=\left(\mathcal{N}_{K i j k} \mathcal{R}_{K i j k}^{-2} \lambda_{i}^{N_{x}} \lambda_{j}^{N_{y}} \lambda_{k}^{N_{z}}\right)^{-1 / 2} \delta_{i p} \delta_{j q} \delta_{k r} . \tag{29}
\end{equation*}
$$

The coefficients $\lambda_{i}^{N_{x}}, \lambda_{j}^{N_{y}}, \lambda_{k}^{N_{z}}$ are the Christoffel numbers which appear as weights in the Gauss-Laguerre quadrature approximation

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} G(u, v, w) d u d v d w \approx \sum_{i=1}^{N_{x}} \sum_{j=1}^{N_{y}} \sum_{k=1}^{N_{z}} \lambda_{i}^{N_{x}} \lambda_{j}^{N_{y}} \lambda_{k}^{N_{z}} G\left(u_{i}, v_{j}, w_{k}\right) \cdot(\tag{30}
\end{equation*}
$$

At the Gauss approximation scaled with h_{x}, h_{y}, h_{z}, the three-dimensional Lagrange functions (26) are orthonormal with respect to the perimetric volume element because of the Lagrange property (29).

The $\Phi_{K}^{\left(L^{\pi}\right) \sigma}(x, y, z)$ functions of equation (18) are expanded in the Lagrange basis as

$$
\begin{align*}
\Phi_{K}^{\left(L^{\pi}\right) \sigma}(x, y, z)= & \sum_{i=1}^{N} \sum_{j=1}^{i-\delta_{K}} \sum_{k=1}^{N_{z}} C_{K i j k}^{\left(L^{\pi}\right) \sigma}\left[2\left(1+\delta_{i j}\right)\right]^{-1 / 2} \\
& \times\left[F_{i j k}^{K}(x, y, z)+\sigma \pi(-1)^{K} F_{j i k}^{K}(x, y, z)\right] \tag{31}
\end{align*}
$$

where we use the same number N of mesh points and the same scale factor h for the two perimetric coordinates x and y in order to take advantage of the Lagrange conditions (29) when the two coordinates are exchanged. Because of the symmetrization the sum over j is limited by the value $i-\delta_{K}$, where δ_{K} is equal to 0 when $(-1)^{K}=\sigma \pi$ and to 1 when $(-1)^{K}=-\sigma \pi$.

The three-body Hamiltonian in perimetric coordinates for each good quantum number L and its discretization on a Lagrange mesh are given in [15]. The singularities of the three Coulomb terms are automatically regularized in the matrix elements by the volume element so that the Lagrange-mesh method is not affected by those singularities. The potential matrix is diagonal and its elements are the values of the potential at the mesh points. The calculation would be as easy with other form factors for the potentials. The resulting matrix is rather sparse. The remaining problem is to calculate the lowest eigenvalues and the corresponding eigenvectors of a large sparse matrix.

For given L^{π}, the eigenvalues in increasing order are labeled by a quantum number $v \geq 0$ related to the vibrational excitation in the Born-Oppenheimer picture. The corresponding eigenvectors provide the coefficients appearing in expansion (31).

Let us consider initial and final components (31) with respective coefficients $C_{K_{i} i j k}^{i\left(L_{i}^{\pi_{i}}\right) \sigma_{i}}$ and $C_{K_{f} i j k}^{f\left(L_{f}^{\pi_{f}}\right) \sigma_{f}}$. Because of the Lagrange property (29), the matrix elements (23) are simply obtained with the Gauss quadrature (30) as

$$
\begin{equation*}
A_{K_{i} K_{f} ; \kappa}^{L_{i} L_{f}} \approx \sum_{i=1}^{N} \sum_{j=1}^{i-\delta_{K}} \sum_{k=1}^{N_{z}} C_{K_{i} i j k}^{i\left(L_{i}^{\pi_{i}}\right) \sigma_{i}} C_{K_{f} i j k}^{f\left(L_{f}^{\pi_{f}}\right) \sigma_{f}} \mathcal{A}_{\kappa}\left(h u_{i}, h v_{j}, h_{z} w_{k}\right) \tag{32}
\end{equation*}
$$

where $\delta_{K}=\max \left(\delta_{K_{i}}, \delta_{K_{f}}\right)$.

3. Energies and E2 transition probabilities

3.1. H_{2}^{+}bound and quasibound energies

The energies of the $v=0$ lowest vibrational bound states for $L=0$ to 35 have been calculated with the present method in [10]. Here we extend those calculations to quasibound states up to $L=40$ and to the first three excited vibrational states. The main reason making this extension possible is a better technique for searching the eigenvalues of a large sparse matrix [32] and faster personal computers.

Since the main aim is to calculate transition matrix elements involving two different wave functions, it is convenient to use a single three-dimensional mesh for all states. An excellent accuracy is obtained when the parameters of the calculation are chosen as
$N=N_{x}=N_{y}=40, N_{z}=20$ and $h=h_{x}=h_{y}=0.14, h_{z}=0.4$. For a given K value, the total number of basis states is then 16400 or 15600 depending on the parity of K. The size of the matrix is larger by about a factor $\left(K_{\max }+1\right)$ when K is limited by $K \leq K_{\max } \leq L$. For $K>2$, like in [10], calculations are performed with $K_{\max }=2$. They correspond to a size of 48400 . In order to make comparisons with more accurate literature results, we use for the proton mass the benchmark value $m_{p}=1836.152701$ a.u. The dissociation threshold E_{d} is then at -0.499727839716 a.u. or Hartrees. The obtained energies are presented as the first line for each L value in Table 1. The accuracy is estimated from the stability of the digits with respect to calculations with $N \pm 2$ mesh points. The error is expected to be at most of a few units on the last displayed digit. Literature results sometimes truncated at the 15 th digit are displayed in each second line. Except in the low- L or low v regions where other references are mentioned, the literature results are the 11-digit energies obtained by Moss [1].

Table 1: Energies of the four lowest vibrational bound or quasibound states in the Σ_{g} rotational band of the H_{2}^{+}molecular ion. Quasibound states are separated from bound states by a horizontal bar. For each L value, the Lagrange-mesh results obtained with $N_{x}=N_{y}=40$, $N_{z}=20$ and $h_{x}=h_{y}=0.14, h_{z}=0.4$ are presented in the first line. The second line displays the results of Moss [1] except when other references are indicated (${ }^{a}$: [8], ${ }^{b}$: [7], ${ }^{c}:$ [3], ${ }^{d}:$ [11]). For $L=0$, Lagrange-mesh results obtained with $N=55, N_{z}=25$ are given in the third line. The proton mass is taken as $m_{p}=1836.152701 m_{e}$.

L	$v=0$	$v=1$	$v=2$	$v=3$
0	-0.5971390631233	-0.587155679207	-0.57775190449	-0.5689084978
	$-0.597139063123405^{a, b}$	-0.587155679212747^{b}	-0.57775190459547^{c}	-0.56890849896677^{c}
	-0.59713906312341	-0.58715567921276	-0.57775190459547	-0.56890849896675
1	-0.5968737388326	-0.586904321034	-0.57751403414	-0.5686837074
	$-0.596873738832765^{a, b}$	-0.58690432104^{c}	-0.57751403424^{c}	-0.56868370850^{c}
2	-0.5963452055453	-0.586403631650	-0.57704023725	-0.5682359921
	-0.59634520554546^{d}	-0.58640363164	-0.57704023732	-0.56823599318
3	-0.5955576390481	-0.585657612010	-0.57633435031	-0.5675690339
	-0.59555763904823^{d}	-0.58565761202	-0.57633435040	-0.56756903505
4	-0.5945171693223	-0.584672134376	-0.57540200340	-0.5666882357
	-0.59451716932241^{d}	-0.58467213439	-0.57540200351	-0.56668823689
5	-0.5932317289982	-0.583454796107	-0.57425047924	-0.5656005853
	-0.59323172899834^{d}	-0.58345479610	-0.57425047935	-0.56560058654
6	-0.5917108651020	-0.582014738323	-0.57288853869	-0.5643144881

Continued on Next Page...

Table 1 - Continuation

L	$v=0$	$v=1$	$v=2$	$v=3$
	-0.59171086510211^{d}	-0.58201473832	-0.57288853880	-0.56431448933
7	-0.5899655240778	-0.580362439246	-0.57132622224	-0.5628395761
	-0.58996552407797^{d}	-0.58036243924	-0.57132622233	-0.56283957736
8	-0.5880078206069	-0.578509492482	-0.56957463754	-0.5611865051
	-0.58800782060699^{d}	-0.57850949246	-0.56957463756	-0.56118650635
9	-0.5858508004337	-0.576468380169	-0.56764574258	-0.5593667471
	-0.58585080043387^{d}	-0.57646838015	-0.56764574264	-0.55936674832
10	-0.5835082064144	-0.574252249872	-0.56555213303	-0.5573923882
	-0.58350820641457^{d}	-0.57425224985	-0.56555213310	-0.55739238942
11	-0.5809942555179	-0.571874702601	-0.56330684095	-0.5552759377
	-0.58099425551801^{d}	-0.57187470258	-0.56330684102	-0.55527593884
12	-0.5783234327778	-0.569349597646	-0.56092315005	-0.5530301532
	-0.57832343277797^{d}	-0.56934959761	-0.56092315012	-0.55303015422
13	-0.5755103063985	-0.566690878119	-0.55841443131	-0.5506678862
	-0.57551030637	-0.56669087811	-0.55841443138	-0.55066788726
14	-0.5725693665304	-0.563912419513	-0.55579400100	-0.5482019498
	-0.57256936651	-0.56391241949	-0.55579400109	-0.54820195086
15	-0.5695148887622	-0.561027902144	-0.55307500179	-0.5456450079
	-0.56951488874	-0.56102790214	-0.55307500187	-0.54564500895
16	-0.5663608221740	-0.558050707254	-0.55027030685	-0.5430094879
	-0.56636082215	-0.55805070724	-0.55027030691	-0.54300948890
17	-0.5631207008978	-0.554993835680	-0.54739244568	-0.5403075137
	-0.56312070088	-0.55499383567	-0.54739244573	-0.54030751461
18	-0.5598075775018	-0.551869847486	-0.54445355024	-0.5375508590
	-0.55980757745	-0.55186984745	-0.54445355029	-0.53755085983
19	-0.5564339761425	-0.548690820585	-0.54146531958	-0.5347509193
	-0.55643397610	-0.54869082057	-0.54146531963	-0.53475092004
20	-0.5530118632588	-0.545468326311	-0.53843900116	-0.5319187001
	-0.55301186322	-0.54546832630	-0.53843900120	-0.53191870081
21	-0.5495526335729	-0.542213419906	-0.53538538700	-0.5290648211
	-0.54955263353	-0.54221341986	-0.53538538704	-0.52906482172
22	-0.5460671092850	-0.538936644076	-0.53231482338	-0.5261995348
	-0.54606710922	-0.53893664405	-0.53231482341	-0.52619953529
23	-0.5425655505505	-0.535648044025	-0.52923723279	-0.5233327596
	-0.54256555049	-0.53564804401	-0.52923723281	-0.52333275999
24	-0.5390576756007	-0.532357192725	-0.52616214773	-0.5204741279
	-0.53905767558	-0.53235719268	-0.52616214774	-0.52047412823
25	-0.5355526891894	-0.529073225592	-0.52309875619	-0.5176330511
	-0.53555268916	-0.52907322556	-0.52309875618	-0.51763305139

Continued on Next Page. . .

Table 1 - Continuation

L	$v=0$	$v=1$	$v=2$	$v=3$
26	-0.5320593184034	-0.525804884277	-0.52005595988	-0.5148188047
	-0.53205931834	-0.52580488421	-0.52005595986	-0.51481880490
27	-0.5285858552922	-0.522560569912	-0.51704244752	-0.5120406401
	-0.52858585525	-0.52256056984	-0.51704244751	-0.51204064025
28	-0.5251402062428	-0.519348407044	-0.51406678702	-0.5093079351
	-0.52514020616	-0.51934840701	-0.51406678700	-0.50930793521
29	-0.5217299486170	-0.516176320684	-0.51113754392	-0.5066304019
	-0.52172994855	-0.51617632061	-0.51113754389	-0.50663040196
30	-0.5183623959369	-0.513052130786	-0.50826343821	-0.5040183899
	-0.51836239587	-0.51305213073	-0.50826343818	-0.50401838991
31	-0.5150446739838	-0.509983671425	-0.50545356105	-0.5014833541
	-0.51504467392	-0.50998367135	-0.50545356098	-0.50148335405
32	-0.5117838118073	-0.506978947094	-0.50271769144	-0.4990386417
	-0.51178381171	-0.50697894703	-0.50271769138	-0.49903864165
33	-0.5085868542608	-0.504046347959	-0.50006679173	-0.4967009705
	-0.50858685419	-0.50404634786	-0.50006679169	-0.49670097047
34	-0.5054610071733	-0.501194964711	-0.49751385593	-0.4944937311
	-0.50546100708	-0.50119496464	-0.49751385586	-0.49449373112
35	-0.5024138345099	-0.498435084588	-0.49507555329	-0.492457
	-0.50241383444	-0.49843508452	-0.49507555322	-0.4924578
36	-0.4994535432176	-0.495779051406	-0.492776112	
	-0.49945354314	-0.49577905134	-0.49277611097	
37	-0.4965894270760	-0.493242971555	-0.49066	
	-0.49658942696	-0.49324297149	-0.4906607	
38	-0.4938326291140	-0.49085095		
	-0.49383262902	-0.49085096		
39	-0.49119764603			
	-0.49119764593			
40	-0.4887061	-0.488706110		

Let us start the discussion with the $\left(L^{\pi}, v\right)=\left(0^{+}, 0\right)$ ground state. The energy of the 0^{+}ground state has been improved with respect to Moss' result in a number of papers $[2,3,4,5,6,7,8]$ to reach an accuracy around or beyond 30 digits in $[7,8]$. Our accuracy is about 10^{-13}. For the $\left(0^{+}, 1\right)$ first vibrational excited state, the accuracy is better than $10^{-11}[7]$. For the $\left(0^{+}, 2\right)$ and $\left(0^{+}, 3\right)$ states, the accuracies are about 10^{-10} and 10^{-9}, respectively [3]. There is thus about a one-digit loss for each vibrational excitation. When the numbers of mesh points are increased to $N=55$ and $N_{z}=25$, the accuracies of all these states reach about 10^{-14} (see the third line of the $L=0$ energies). The
energy of the lowest $L=1$ state is known with about 25 digits $[7,8]$. Our result has an accuracy better than 2×10^{-13}. Comparisons with references [1,3] indicate that the accuracies of the $L=1$ vibrational excited states behave like for $L=0$. Results with an accuracy close to 18 digits are available for $L=2-12$ and $v=0$ [11]. They show that our error for the lowest vibrational energy remains smaller than 2×10^{-13} for all these states. When comparing the rest of our results with those of Moss [1], one observes that both works agree very well. We are a little more accurate for $v=0$ and a little less accurate for $v=2$ and 3. But in addition, the Lagrange-mesh method provides easy-to-use wave functions. The obtained spectrum is depicted in Fig. 1.

Figure 1. Four lowest Σ_{g} rotational bands of the H_{2}^{+}molecular ion and dissociation energy E_{d}. Arrows show how the direction of $L \rightarrow L+2$ transitions between the two lowest bands changes along the band.

Typical convergence tests are displayed in Table 2 for two quite different sets of initial and final states. For the values $h=0.14$ and $h_{z}=0.4$ close to those suggested in [10], Table 2 displays initial and final energies and transition probabilities for various choices of N and N_{z}. The transition probability W_{0} is obtained by restricting (25) to $\kappa=0$ while W_{1} corresponds to $\kappa \leq 1$. First one observes that the $\kappa=1$ contributions have an importance smaller than 0.05% and that the $\kappa=2$ contributions are smaller than 0.001%. Second one sees that the convergence of the transition probabilities is slower than the convergence of the energies, as expected from the variational principle. A good convergence with respect to N_{z} is already obtained for $N_{z}=20$. The convergence with respect to N is slower. Increasing N is more expensive than increasing N_{z} since the size of the basis increases with N^{2}. Since the convergence is exponential, one can estimate that the relative accuracy on W is about 10^{-9} for $\left(4^{+}, 0\right) \rightarrow\left(2^{+}, 0\right)$ and still better than 10^{-8} for $\left(30^{+}, 2\right) \rightarrow\left(32^{+}, 0\right)$. This means that the wave functions are quite accurate. Further similar tests have been performed for other transitions.

Table 2. Convergence of the energies and transition probabilities as a function of the numbers N and N_{z} of mesh points. Two cases are shown: $\left(4^{+}, 0\right) \rightarrow\left(2^{+}, 0\right)$ where $L_{f}=L_{i}+2$ (upper set) and $\left(30^{+}, 2\right) \rightarrow\left(32^{+}, 0\right)$ where $L_{f}=L_{i}-2$ (lower set). The scale factors are $h=0.14$ and $h_{z}=0.4$.

N	N_{z}	$E_{i}\left(4^{+}, 0\right)$	$E_{f}\left(2^{+}, 0\right)$	$W_{0}\left(10^{-10} \mathrm{~s}^{-1}\right)$	$W_{1}\left(10^{-10} \mathrm{~s}^{-1}\right)$	$W\left(10^{-10} \mathrm{~s}^{-1}\right)$
20	20	-0.5945166	-0.5963446	9.2135	9.2098	9.2098
25	20	-0.594517156	-0.596345193	9.212254	9.208480	9.208477
30	20	-0.59451716903	-0.59634520526	9.2122203	9.2084458	9.2084423
35	20	-0.594517169315	-0.596345205539	9.212219410	9.208444904	9.208441446
35	30	-0.594517169315	-0.596345205539	9.212219411	9.208444904	9.208441437
40	20	-0.59451716932229	-0.59634520554533	9.212219383	9.208444877	9.208441409
40	30	-0.59451716932230	-0.59634520554533	9.212219384	9.208444878	9.208441410
$[11]$		-0.59451716932241	-0.59634520554546			
N	N_{z}	$E_{i}\left(30^{+}, 2\right)$	$E_{f}\left(32^{+}, 0\right)$	$W_{0}\left(10^{-10} \mathrm{~s}^{-1}\right)$	$W_{1}\left(10^{-10} \mathrm{~s}^{-1}\right)$	$W\left(10^{-10} \mathrm{~s}^{-1}\right)$
20	20	-0.50807	-0.5117819	2.72	2.72	2.72
25	20	-0.5082608	-0.511783798	2.3940	2.3935	2.3935
30	20	-0.508263395	-0.51178381169	2.391953	2.391480	2.391488
35	20	-0.5082634376	-0.5117838118059	2.391930599	2.391457162	2.391465808
35	30	-0.5082634376	-0.5117838118059	2.391930596	2.391457159	2.391465806
40	20	-0.50826343821	-0.51178381180725	2.391930370	2.391456933	2.391465579
40	30	-0.50826343821	-0.51178381180725	2.391930368	2.391456931	2.391465577
$[1]$		-0.50826343818	-0.51178381171			

The convergence of the transition probabilities with respect to $K_{\text {max }}$ can be studied by comparison with results from wave functions truncated at $K_{\max }=0$ and $K_{\max }=1$. The relative error when $K_{\max }=0$ is smaller than 0.3% for all considered transitions while the error for $K_{\max }=1$ is smaller than 10^{-5}. This is rather similar to truncations with respect to κ. By extrapolation, we estimate that the relative error on the present transition probabilities obtained with $K_{\max }=2$ should be smaller than 10^{-7}.

The probabilities per second for transitions within a same rotational band, $L_{f}=$ $L_{i}-2$ and $v_{f}=v_{i} \leq 3$, are presented in Table 3. They include some transition probabilities involving quasibound states. In accord with the previous discussion, we limit the number of significant figures to six. The probabilities increase slowly with L with a maximum around $L_{i}=32$ for $v_{i}=0, L_{i}=30$ for $v_{i}=1, L_{i}=28$ for $v_{i}=2$, and $L_{i}=27$ for $v_{i}=3$, not far from the end of the rotational bands. This is due to a maximum of the energy differences around $L_{i}=25$. The maximum of the transition probabilities is shifted toward higher L_{i} values by a steady increase of the reduced matrix elements. The transition probabilities behave similarly for the displayed v values with a slight decrease when v increases.

Table 3: Quadrupole transition probabilities per second W for transitions between states of a same rotational band ($v_{f}=v_{i}, L_{f}=L_{i}-2$). Results are given with five digits followed by the power of 10 .

L_{i}	$v_{i}=0$	$v_{i}=1$	$v_{i}=2$	$v_{i}=3$
2	$9.73137-12$	$9.68053-12$	$9.44158-12$	$9.03844-12$
3	$1.58133-10$	$1.57047-10$	$1.52934-10$	$1.46188-10$
4	$9.20844-10$	$9.12285-10$	$8.86366-10$	$8.45410-10$
5	$3.31604-09$	$3.27474-09$	$3.17219-09$	$3.01692-09$
6	$9.00366-09$	$8.85698-09$	$8.54831-09$	$8.10126-09$
7	$2.02718-08$	$1.98514-08$	$1.90778-08$	$1.80055-08$
8	$3.99147-08$	$3.88876-08$	$3.71919-08$	$3.49366-08$
9	$7.10243-08$	$6.88086-08$	$6.54568-08$	$6.11668-08$
10	$1.16728-07$	$1.12401-07$	$1.06306-07$	$9.87720-08$
11	$1.79909-07$	$1.72122-07$	$1.61776-07$	$1.49387-07$
12	$2.62944-07$	$2.49855-07$	$2.33290-07$	$2.14006-07$
13	$3.67492-07$	$3.46723-07$	$3.21491-07$	$2.92858-07$
14	$4.94334-07$	$4.62969-07$	$4.26164-07$	$3.85347-07$
15	$6.43299-07$	$5.97913-07$	$5.46222-07$	$4.90073-07$
16	$8.13246-07$	$7.49975-07$	$6.79755-07$	$6.04901-07$
17	$1.00212-06$	$9.16753-07$	$8.24137-07$	$7.27087-07$
18	$1.20704-06$	$1.09514-06$	$9.76156-07$	$8.53413-07$
19	$1.42445-06$	$1.28149-06$	$1.13217-06$	$9.80347-07$
20	$1.65027-06$	$1.47175-06$	$1.28826-06$	$1.10419-06$
21	$1.88004-06$	$1.66162-06$	$1.44038-06$	$1.22122-06$
22	$2.10912-06$	$1.84674-06$	$1.58453-06$	$1.32783-06$
23	$2.33281-06$	$2.02280-06$	$1.71679-06$	$1.42058-06$
24	$2.54648-06$	$2.18562-06$	$1.83351-06$	$1.49635-06$
25	$2.74572-06$	$2.33132-06$	$1.93134-06$	$1.55232-06$
26	$2.92640-06$	$2.45632-06$	$2.00725-06$	$1.58608-06$
27	$3.08474-06$	$2.55742-06$	$2.05862-06$	$1.59557-06$
28	$3.21737-06$	$2.63182-06$	$2.08322-06$	$1.57913-06$
29	$3.32135-06$	$2.67712-06$	$2.07917-06$	$1.53544-06$
30	$3.39420-06$	$2.69132-06$	$2.04495-06$	$1.46347-06$
31	$3.43383-06$	$2.67276-06$	$1.97930-06$	$1.36240-06$
32	$3.43858-06$	$2.62008-06$	$1.88115-06$	$1.23141-06$
33	$3.40711-06$	$2.53210-06$	$1.74939-06$	$1.06927-06$
34	$3.33837-06$	$2.40767-06$	$1.58254-06$	$8.73211-07$
35	$3.23144-06$	$2.24536-06$	$1.37799-06$	6.32
36	$3.08537-06$	$2.04291-06$	$1.1294-06$	
	07			

Continued on Next Page...

Table 3 - Continuation

L_{i}	$v_{i}=0$	$v_{i}=1$	$v_{i}=2$	$v_{i}=3$	
37	$2.89882-06$	$1.79586-06$	8.1	-07	
38	$2.66934-06$	$1.4929-06$			
39	$2.39163-06$				
40	2.051	-06			

The probabilities per second for other transitions are displayed in Table 4. The columns correspond to transitions between different vibrational states. For each L_{i} value, the successive lines correspond to increasing values of L_{f}, i.e., to $L_{f}=L_{i}-2$ for $L_{i}>1, L_{f}=L_{i}$ for $L_{i}>0$, and $L_{f}=L_{i}+2$, respectively. For $L_{i} \leq 20$, the obtained probabilities agree with those of Posen et al [13] and improve them significantly. More than 95% of the results of Posen et al exactly correspond to our result rounded at two significant figures. In most other cases, the rounding is of 6 units on the third digit rather than at most 5 for a normal rounding. An example of the few 'worst' cases is the $\left(19^{-}, 3\right) \rightarrow\left(17^{-}, 2\right)$ transition probability where our result in Table 4 is 5.84700×10^{-10} while the result of Posen et al is 5.7×10^{-10}.

The strongest transition from each state occurs in general towards the nearest vibrational state $\left(v_{f}=v_{i}-1\right)$ for $L_{f}=L_{i}-2$. Exceptions can be found between $L_{i}=14$ and $L_{i}=22$. For $v_{f}=v_{i}-1$, in the vicinity of $L_{i}=23$ and beyond, the $\left(L_{i}, v_{i}\right) \rightarrow\left(L_{i}+2, v_{i}-1\right)$ transitions are replaced by $\left(L_{i}+2, v_{i}-1\right) \rightarrow\left(L_{i}, v_{i}\right)$ transitions because the sign of the energy difference changes (see the arrows in Fig. 1 for the $1 \rightarrow 0$ transitions). These numbers are indicated in italics in Table 4. For example, the first number in the last line for $L_{i}=23$ corresponds to the $(25,0) \rightarrow(23,1)$ transition. Hence the transition probabilities strongly vary in this region.

Table 4: Quadrupole transition probabilities per second W for transitions between different vibrational quantum numbers $\left(v_{i} \neq v_{f}\right)$. The three successive lines correspond to increasing L_{f} values, i.e. $L_{f}=L_{i}-2, L_{f}=L_{i}$ and $L_{f}=L_{i}+2$, respectively, for $L_{i} \geq 2$. Italicized numbers for $(1 \rightarrow 0),(2 \rightarrow 1)$ and $(3 \rightarrow 2)$ mean that the initial and final states are exchanged (the first one is preceded in each case by a horizontal bar).

L_{i}	$(1 \rightarrow 0)$	$(2 \rightarrow 0)$	$(2 \rightarrow 1)$	$(3 \rightarrow 0)$	$(3 \rightarrow 1)$	$(3 \rightarrow 2)$
0	$5.21507-07$	$6.77783-08$	$8.57180-07$	$6.27798-09$	$1.78077-07$	$1.04581-06$
1	$2.64911-07$	$4.31045-08$	$4.32610-07$	$5.53479-09$	$1.10390-07$	$5.24404-07$
	$2.58605-07$	$2.80160-08$	$4.26310-07$	$1.84573-09$	$7.51842-08$	$5.21585-07$
2	$1.60207-07$	$3.12877-08$	$2.59397-07$	$4.97871-09$	$7.84599-08$	$3.11714-07$
	$1.87856-07$	$3.07072-08$	$3.06623-07$	$3.96055-09$	$7.85999-08$	$3.71470-07$

Continued on Next Page. . .

Table 4 - Continuation

L_{i}		(2 -0)	$(2 \rightarrow 1)$	(1)))
3	1.78844	1.552 08-08	2.95394	5.794 07-10	4.279 53-08	3.62035
	$2.26689-07$	4.932 77-08	3.644 12-07	8.7	7	4.3
	$1.73434-07$	2.85	2.828 71-07	3.705 83-09	7.300 64-08	3.423 98-07
	$1.30397-07$	8.5	2.155 75-07	9.	-	2.643 79-07
	2.70732-07	6.5	4.3	1.2	1.592 35-07	5.102 93-07
	1.66490-07	2.76	2.7	3.620 52-09	7.064 46-08	3.279 79-07
5	9.5	4.302	1.5	6.2		
	3.01407-07	7.9	4.75887-07		7	
	1.6	2.70	2.626 29-07	3.585 87-09	6.915 50-08	3.170 65-07
	6.9	1.8	1.14616-07	1.565 94-10	9	7
		28		2.10987-08	7	07
	$1.56737-07$	2.66	2.5	3.57142-09	88	07
7	4.9		8.159 26-08	0	9	08
	3.294 90-07	1.042 47-07	5.08131-07	2.527 53-08	2.459 44-07	5.797 94-07
	1.520 72-07	2.626 02-08	2.466 56-07	3.565 77-09	6.680 07-08	2.966 42-07
8	3.456 91-08	3.4482	5.676 83-08	7.573 73-10	3.815 77-10	6.900 63-08
	3.27	1.1	4.9	2.9	2.642 39-07	5.598 86-07
	$1.47213-07$	2.5	2.382 86-07	3.563 40-09	6.563 11-08	2.858 90-07
9	$2.35332-08$	6.95092	3.8	1.078 40-09	9.972 57-12	4.6506
	3.1	1.1	4.	3.2	2.75866-07	5.222 05-07
	$1.42095-07$	2.54	2.29	3.56	6.438 97-08	2.745 59-07
10	1.5	4.0	2.5	1.3	4.833 24-10	3.03765-08
	2.96	1.2	4.35		2.80430-07	4.699 78-07
	1.3	2.4	2.20	3.556 97-09	6.30	2.6
11	9.98	8.7	1.609 93-08	1.5	1.38	
	2.69	1.2	3.871 01-07	$3.76171-08$	2.779 21-07	$4.07073-07$
	1.310	2.4	2.1046	3.549 43-09	6.160 56-08	2.501 85-07
12	6.17474-09	1.3	2	9	2.431 87-09	1.15985-08
	2.372 84-07	1.2	3.315 58-07		687 08-07	3.377 66-07
	1.25176-07	2.38883-0	$2.00372-07$	3.537 51-09	6.004 43-08	2.372 66-07
13	3.66457-09	1.812 72-09	5.78188-09		09	09
	2.0	1.	2.	3.93561-08	7	2.66461-07
	1.191 02-07	2.32938	1.	3.520 50-09	5.836 71-08	$2.23977-07$
14	2.072 49-09	2.168 45-09	3.2	1.887 28-09	$4.23660-09$	3.666 07-09
	1.638 56-07	1.09448-07	2.126 54-07	3.896 32-08	2.332 57-07	1.974 23-07
	1.128 75-07	2.265 65-08	$1.79315-07$	3.49794-09	5.65763-08	2.10417-07
15	$1.10644-09$	2.41635-09	1.685 68-09	1.875 42-09	4.826 21-09	1.874 47-09
	1.26886-07	1.00155-07	1.559 56-07	3.778 72-08	2.09141-07	1.345 41-07
	$1.06538-07$	2.19777-08	$1.68505-07$	3.469 59-09	5.46765-08	1.96690

Continued on Next Page...

Table 4 - Continuation

L_{i}	$(1 \rightarrow 0)$	$(2 \rightarrow 0)$	$(2 \rightarrow 1)$	$(3 \rightarrow 0)$	$(3 \rightarrow 1)$	$(3 \rightarrow 2)$
16	5.503 02-10	2.55461-09	8.17140-10	1.822 20-09	5.17446-09	8.80862-10
	9.223 82-08	8.942 07-08	$1.05069-07$	$3.59144-08$	1.823 95-07	8.11432-08
	1.00136-07	2.125 98-08	1.576 12-07	$3.43536-09$	5.267 42-08	$1.82900-07$
17	2.501 72-10	2.59195-09	3.588 70-10	1.73709-09	5.294 99-09	3.708 12-10
	6.152 63-08	7.77580-08	6.24316-08	$3.34547-08$	1.542 90-07	3.987 69-08
	$9.37107-08$	2.050 57-08	1.46711-07	3.39533-09	$5.05772-08$	1.69146-07
18	1.009 96-10	2.543 02-09	1.380 41-10	1.628 96-09	5.21788-09	1.342 71-10
	3.60852-08	6.567 76-08	2.99476-08	3.053 21-08	1.260 48-07	1.264 35-08
	8.730 54-08	1.97186-08	1.358 76-07	$3.34967-09$	4.839 45-08	1.555 25-07
19	$3.45607-11$	2.425 16-09	4.39710-11	1.505 59-09	4.981 25-09	3.900 66-11
	1.69412-08	5.366 17-08	8.95752-09	$2.72770-08$	9.879 86-08	5.847 00-10
	8.095 94-08	1.890 20-08	1.251 77-07	3.29861-09	4.613 53-08	1.421 29-07
20	9.236 20-12	2.256 10-09	1.046 55-11	1.37354-09	4.625 31-09	7.945 85-12
	4.801 86-09	4.21482-08	2.402 42-10	2.38190-08	$7.35380-08$	4.109 05-09
	$7.47100-08$	$1.80597-08$	$1.14677-07$	3.242 44-09	4.380 95-08	1.290 40-07
21	1.634 20-12	2.052 46-09	$1.49148-12$	1.23814-09	4.18847-09	8.26364-13
	6.36784-11	3.15184-08	4.042 78-09	2.02815-08	5.11121-08	2.29484-08
	6.859 13-08	1.719 52-08	$1.04437-07$	3.18149-09	4.142 69-08	$1.16335-07$
22	1.25721-13	1.82890-09	6.692 18-14	1.10356-09	$3.70500-09$	1.41734-14
	2.83383-09	2.209 23-08	2.012 90-08	1.67784-08	$3.22067-08$	5.623 30-08
	6.263 42-08	$1.63123-08$	9.450 89-08	3.11602-09	$3.89971-08$	1.040 85-07
23	6.603 90-16	1.59774-09	8.01889-18	9.729 19-10	3.203 89-09	6.86645-18
	$1.29607-08$	$1.41266-08$	4.783 98-08	$1.34117-08$	1.73501-08	$1.02575-07$
	5.686 63-08	$1.54145-08$	8.49409-08	$3.04628-09$	3.652 98-08	9.23486-08
24	$2.02561-16$	1.36888-09	7.05838-15	8.48491-10	2.70850-09	7.29879-14
	3.006 99-08	7.818 20-09	8.61582-08	1.02711-08	6.922 56-09	1.60154-07
	5.131 20-08	$1.45052-08$	7.57744-08	2.972 44-09	$3.40339-08$	8.11805-08
25	$6.63913-14$	1.14988-09	3.825 31-13	7.31812-10	2.236 72-09	1.475 85-12
	5.360 26-08	3.30886-09	1.33774-07	7.43448-09	1.17061-09	2.267 95-07
	4.599 22-08	1.358 74-08	6.70454-08	2.894 56-09	3.15183-08	7.06260-08
26	8.591 82-13	9.462 12-10	$3.28654-12$	6.238 49-10	1.801 45-09	9.232 71-12
	8.28530-08	6.929 09-10	1.891 45-07	4.969 60-09	2.243 78-10	3.000 34-07
	4.092 49-08	1.266 43-08	5.878 42-08	2.812 55-09	2.899 09-08	6.072 32-08
27	$4.48342-12$	7.615 46-10	1.43378-11	5.251 26-10	1.41126-09	$3.45391-11$
	1.17003-07	2.54768-11	2.505 47-07	$2.93677-09$	4.11531-09	3.771 70-07
	3.612 48-08	1.17384-08	5.10158-08	2.726 10-09	2.645 96-08	5.150 34-08
28	$1.51517-11$	5.980 33-10	4.393 05-11	4.35831-10	1.07106-09	$9.69071-11$
	1.55155-07	1.331 45-09	3.16114-07	$1.39231-09$	1.279 22-08	4.552 88-07
	$3.16038-08$	1.081 22-08	$4.37602-08$	2.63466-09	$2.39313-08$	$4.29911-08$

Continued on Next Page...

Table 4 - Continuation

L_{i}	$(1 \rightarrow 0)$	$(2 \rightarrow 0)$	$(2 \rightarrow 1)$	$(3 \rightarrow 0)$	$(3 \rightarrow 1)$	$(3 \rightarrow 2)$
29	3.973 15-11	4.566 04-10	1.085 29-10	$3.55908-10$	7.827 86-10	2.267 22-10
	1.963 55-07	4.61458-09	3.83868-07	3.931 96-10	2.613 24-08	5.312 52-07
	2.73713-08	9.88788-09	3.703 24-08	2.53730-09	2.141 25-08	3.520 44-08
30	8.836 10-11	3.372 29-10	2.323 95-10	2.85133-10	5.460 45-10	$4.69166-10$
	2.396 14-07	9.866 27-09	4.51718-07	$2.79267-12$	4.39441-08	6.016 44-07
	2.343 40-08	8.96720-09	3.08436-08	2.432 53-09	1.890 86-08	2.81561-08
31	1.75359-10	2.39147-10	4.50388-10	2.23164-10	3.586 27-10	$8.91170-10$
	$2.83917-07$	1.70735-08	5.17445-07	2.98156-10	6.594 74-08	6.626 16-07
	1.97966-08	8.05167-09	2.520 07-08	2.31803-09	$1.64237-08$	$2.18536-08$
32	3.20759-10	1.610 56-10	8.129 59-10	1.695 91-10	2.16960-10	1.594 77-09
	3.282 30-07	2.622 48-08	5.786 27-07	1.37871-09	9.170 79-08	7.095 59-07
	1.646 15-08	7.142 29-09	2.010 72-08	2.190 00-09	$1.39593-08$	1.629 95-08
33	5.53023-10	1.012 66-10	1.39555-09	$1.23965-10$	1.164 28-10	2.74497-09
	3.71482-07	$3.73098-08$	6.32492-07	3.373 48-09	$1.20439-07$	7.363 38-07
	1.342 94-08	6.239 26-09	1.55631-08	2.041 80-09	1.151 08-08	1.149 16-08
34	$9.14072-10$	5.780 87-11	2.31744-09	8.58112-11	5.155 74-11	$4.63539-09$
	$4.12530-07$	5.030 24-08	6.75569-07	6.427 78-09	1.503 43-07	7.331 27-07
	1.069 95-08	5.34133-09	$1.15657-08$	1.859 72-09	9.05710-09	7.42117-09
35	1.4690209	2.850 59-11	3.783 25-09	5.463 02-11	1.59807-11	7.87945-09
	4.500 71-07	6.50815-08	7.02851-07	$1.05-08$	$1.75-07$	$6.76-07$
	8.269 35-09	4.443 93-09	8.10879-09	$1.60-09$	$6.49-09$	$4.05-09$
36	2.32654-09	1.09777-11	6.18839-09	$2.97-11$	$2.05-12$	$1.4-08$
	4.824 27-07	8.1083-08	7.0514-07			
	6.13507-09	3.5326-09	5.1798-09			
37	3.68647709	2.5662-12	1.0467-08			
	5.069 63-07	9.4-08	6.5 -07			
	4.29106-09	$2.5-09$	$2.7-09$			
38	5.97146-09	$1.3-13$				
	$5.179-07$					
	$\begin{array}{ll} 2.727 & -09 \end{array}$					
	$1.033-08$					

Oscillator strengths are depicted in Figs. 2, 3 and 4. For the transitions with $\Delta L=L_{i}-L_{f}=-2$ displayed in Fig. 2, they present a strong variation along the band. They also vary strongly with $\Delta v=v_{i}-v_{f}$. The $\Delta v=1$ transitions present a deep minimum around $L_{i}=23$ due to the change of sign of the energy difference (see Fig. 1). Beyond that value, the initial state is lower than the final $v_{f}<v_{i}$ state and the strengths are negative. Otherwise the strengths slowly increase with the vibrational excitation. The $\Delta v=2$ strengths are smaller by more than an order of magnitude. The minimum

Figure 2. Oscillator strengths for $L_{f}=L_{i}+2$ transitions.
occurring around $L_{i}=8$ is here due to a change of sign of the matrix element appearing in (3). The $\Delta v=3$ strengths are smaller by more than an order of magnitude than the $\Delta v=2$ strengths. Except near the minimum at $L_{i}=4$ also due to a change of sign of the matrix element, they are rather constant along the band.

Figure 3. Oscillator strengths for $L_{f}=L_{i}$ transitions.
The $\Delta L=0$ oscillator strengths presented in Fig. 3 do not vary much along the bands as expected from the similar vibrational structures of the initial and final states. They slowly decrease for $\Delta v=1$ and slowly increase for $\Delta v=3$. They are remarkably flat for $\Delta v=2$. Except near the end of the band, for given Δv, they increase with v.

The $\Delta L=+2$ strengths presented in Fig. 4 behave similarly to the $\Delta L=-2$ strengths. Minima take place around $L_{i}=20$ for $\Delta v=1, L_{i}=26$ for $\Delta v=2$ and $L_{i}=30$ for $\Delta v=3$. These minima thus occur now at increasing L_{i} values with increasing Δv and are all due to a change of sign of the matrix element.

Lifetimes are defined as

$$
\begin{equation*}
\tau=\left(\sum_{E_{f}<E_{i}} W_{i \rightarrow f}\right)^{-1} \tag{33}
\end{equation*}
$$

Figure 4. Oscillator strengths for $L_{f}=L_{i}-2$ transitions.

For the $L=0$ vibrational states, they have been calculated in [33]. The values 1.92×10^{6} s, $1.08 \times 10^{6} \mathrm{~s}$ and $0.813 \times 10^{6} \mathrm{~s}$ for the first, second and third $L=0$ excited vibrational states agree respectively well with our values $1.917518 \times 10^{6} \mathrm{~s}, 1.081130 \times 10^{6} \mathrm{~s}$ and 0.812900×10^{6} s obtained from Table 4. Lifetimes for the calculated states are displayed in Fig. 5. For the $\left(1^{-}, 0\right)$ state, the lifetime is infinite within the present description. The large difference between the lifetimes of the $\left(2^{+}, 0\right)$ state and, for example, the $\left(0^{+}, 1\right)$ state is essentially due to the factor $\left(E_{i}-E_{f}\right)^{5}$ in expression (7) of the E2 transition probability. Indeed the vibrational energy difference in the transition from the $\left(0^{+}, 1\right)$ state is about 10 times larges than the rotational energy difference in the transition from the $\left(2^{+}, 0\right)$ state which leads to an order of magnitude of 10^{5} for the ratio of the lifetimes.

Except for the ground-state rotational band, where the lifetimes decrease rather fast from the very high values obtained at low orbital momenta (about 3300 years for $L=2$), the lifetimes do not depend much on L. They are rather constant up to about $L=15$. Then they slowly decrease till about $L=30$ before starting increasing again slowly. The decrease is less than a factor of five for $v=1$, three for $v=2$ and two for $v=3$. For $v=1$, the lifetimes are of the order of twenty-two days at small L and of four days near $L=30$. When v increases from 1 to 3 , they decrease progressively for $L \leq 18$ and increase progressively for $L>18$.

4. Conclusion

In this paper, by accurately solving a three-body Schrödinger equation with Coulomb potentials, we have calculated the energies and wave functions of up to four of the lowest vibrational bound or quasibound states of the hydrogen molecular ion from $L=0$ to 40. The calculation is performed in perimetric coordinates with the Lagrange-mesh method. For low orbital momenta, a comparison with more accurate calculations in the literature and a cross comparison with the extensive results of Moss [1] show that the

Figure 5. Lifetimes τ in the first four rotational bands $(v=0-3)$.
energies with 40 mesh points for the x and y coordinates and 20 mesh points for the z coordinate have an accuracy of about 13 digits for the lowest vibrational state and a slowly decreasing accuracy with vibrational excitation providing still at least 9 digits for the third excited vibrational state. These accuracies are maintained along the whole rotational bands.

With the corresponding wave functions, a simple calculation using the associated Gauss-Laguerre quadrature provides the quadrupole strengths and transition probabilities per time unit over the whole rotational bands. Tests with increasing numbers of mesh points and various truncations on K show that the accuracy on this probabilities should reach six significant figures. The $K=0$ approximation leads to an error smaller than 0.3%. It slightly differs from the Born-Oppenheimer approximation by the fact that the proton mass is taken into account here. For the calculated states, we display tables extending the results and improving the accuracy of [13]. Although the displayed accuracy may exceed what is needed in applications, the results can also serve as a benchmark for testing approximate wave functions of H_{2}^{+}. Except for the states in the ground-state rotational band that can only decay slowly to the $L_{f}=L_{i}-2$ previous state, all calculated lifetimes have an order of magnitude around $10^{6} \mathrm{~s}$.

Acknowledgments

We thank Michel Hesse for information about the codes. This text presents research results of the interuniversity attraction pole programme P6/23 initiated by the Belgianstate Federal Services for Scientific, Technical and Cultural Affairs. H.O.P. thanks CONACyT (México) for a postdoctoral grant.

References

[1] Moss R 1993 Mol. Phys. 801541
[2] Korobov V I 2000 Phys. Rev. A 61064503
[3] Hilico L, Billy N, Grémaud B and Delande D 2000 Eur. Phys. J. D 12449
[4] Bailey D H and Frolov A M 2002 J. Phys. B: At. Mol. Opt. Phys. 354287
[5] Yan Z C, Zhang J Y and Li Y 2003 Phys. Rev. A 67062504
[6] Cassar M M and Drake G W F 2004 J. Phys. B: At. Mol. Opt. Phys. 372485
[7] Li H, Wu J, Zhou B L, Zhu J M and Yan Z C 2007 Phys. Rev. A 75012504
[8] Hijikata Y, Nakashima H and Nakatsuji H 2009 J. Chem. Phys. 130024102
[9] Carbonell J, Lazauskas R, Delande D, Hilico L and Kilic S 2003 Europhys. Lett. 64316
[10] Hesse M and Baye D 2003 J. Phys. B: At. Mol. Opt. Phys. 36139
[11] Yan Z C and Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 371055
[12] Bates D R and Poots G 1953 Proc. Phys. Soc. A 66784
[13] Posen A, Dalgarno A and Peek J 1983 At. Data Nucl. Data Tables 28265
[14] Hesse M and Baye D 1999 J. Phys. B: At. Mol. Opt. Phys. 325605
[15] Hesse M and Baye D 2001 J. Phys. B: At. Mol. Opt. Phys. 341425
[16] Baye D and Heenen P-H 1986 J. Phys. A: Math. Gen. 192041
[17] Baye D 2006 Phys. Stat. Sol. (b) 2431095
[18] Baye D, Hesse M and Vincke M 2002 Phys. Rev. E 65026701
[19] Baye D, Vincke M and Hesse M 2008 J. Phys. B: At. Mol. Opt. Phys. 41185002
[20] Baye D, Hesse M and Vincke M 2008 J. Phys. B: At. Mol. Opt. Phys. 41185002
[21] Baye D and Sparenberg J-M 2010 Phys. Rev. E 82056701
[22] Vincke M and Baye D 2006 J. Phys. B: At. Mol. Opt. Phys. 392605
[23] Olivares-Pilón H, Baye D, Turbiner A V and López Vieyra J C J. Phys. B: At. Mol. Opt. Phys. 43065702
[24] Descouvemont P, Daniel C and Baye D 2003 Phys. Rev. C 67044309
[25] Descouvemont P, Tursunov E M and Baye D 2006 Nucl. Phys. A 765370
[26] Druet T, Baye D, Descouvemont P and Sparenberg J-M 2010 Nucl. Phys. A 84588
[27] Pekeris C L 1958 Phys. Rev. 1121649
[28] Sobelman I I 1972 An Introduction to the Theory of Atomic Spectra (Pergamon, Oxford)
[29] Sobelman I I 1979 Atomic Spectra and Radiative Transitions (Springer, Berlin)
[30] Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, New Jersey)
[31] Feagin J M 1984 J. Phys. B: At. Mol. Phys. 172433
[32] Bollhöfer M and Notay Y 2007 Comput. Phys. Commun. 177951
[33] Peek J M, Hashemi-Attar A R and Beckel C L 1979 J. Chem. Phys. 715382

