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Abstract
The prevalence of Type 2 diabetes is increasing dramatically as a result of the obesity epidemic, and poses
a major health and socio-economic burden. Type 2 diabetes develops in individuals who fail to compensate
for insulin resistance by increasing pancreatic insulin secretion. This insulin deficiency results from pancreatic
β-cell dysfunction and death. Western diets rich in saturated fats cause obesity and insulin resistance, and
increase levels of circulating NEFAs [non-esterified (‘free’) fatty acids]. In addition, they contribute to β-
cell failure in genetically predisposed individuals. NEFAs cause β-cell apoptosis and may thus contribute to
progressive β-cell loss in Type 2 diabetes. The molecular pathways and regulators involved in NEFA-mediated
β-cell dysfunction and apoptosis are beginning to be understood. We have identified ER (endoplasmic
reticulum) stress as one of the molecular mechanisms implicated in NEFA-induced β-cell apoptosis. ER stress
was also proposed as a mechanism linking high-fat-diet-induced obesity with insulin resistance. This cellular
stress response may thus be a common molecular pathway for the two main causes of Type 2 diabetes,
namely insulin resistance and β-cell loss. A better understanding of the molecular mechanisms contributing
to pancreatic β-cell loss will pave the way for the development of novel and targeted approaches to prevent
Type 2 diabetes.

Pathogenesis of Type 2 diabetes
In parallel with the increase in life expectancy of the last
two centuries, lifestyles have changed considerably. Western
diets are rich in energy and saturated fats [1], and physical
exercise is taken infrequently. The increased lifespan and
the obesity epidemic have caused a dramatic increase in the
prevalence of Type 2 diabetes [2]. Diabetes poses a major
and growing health and socio-economic burden on society.
Obesity is nearly invariably associated with insulin resistance,
but this is not sufficient to cause diabetes [3]. Diabetes
develops in a subset of genetically predisposed individuals
whose pancreatic insulin secretion fails to meet the insulin
requirements set by the individual’s insulin sensitivity [3].
In a longitudinal study of first-degree relatives of Type 2
diabetic patients, pancreatic β-cell insulin secretory function
declined over time, while insulin sensitivity did not [4]. In the
relatives who progressed from normal to impaired glucose
tolerance, β-cell function deteriorated (36% decrease over
7 years), whereas those who did not progress had only minor
changes in β-cell function (14% decrease) (Figure 1) [4].
Over the 7-year follow-up period, the first-degree relatives
gained weight and increased their waist circumference. This
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increase in abdominal obesity was inversely correlated with
the evolution of insulin secretion and β-cell function [4].
These observations and those from other groups [5,6] raise the
possibility that increased abdominal adiposity is deleterious
to β-cells. The accumulation of pancreatic ectopic fat seen
with high-fat feeding and obesity [7] may contribute to β-
cell dysfunction [8], or it may be due to cross-talk bet-
ween the visceral (and subcutaneous) fat compartments and
β-cells. A model for the interplay between adipocytes and β-
cells is presented in Figure 2. Similar interactions have been
described between other tissues, such as muscle, and β-cells
[9].

In addition to functional defects, β-cell mass seems to be
decreased in Type 2 diabetes. Post-mortem studies reported
a 30–60% decrease in β-cell mass in Type 2 diabetic patients
[10–13] as a result of increased apoptosis [10]. It is not yet
understood how obesity and gene–environment interactions
contribute to β-cell dysfunction and apoptosis in Type 2
diabetes. The FTO gene was shown to increase diabetes risk
by increasing body fatness, probably through hypothalamic
effects [14]. Many of the other recently discovered Type 2
diabetes genes are expressed in β-cells [15] and may alter
resistance of the β-cell to environmental stresses or insults.

Mechanisms of β-cell failure in Type 2
diabetes
Cross-talk between adipocytes and β-cells is mediated by
NEFAs [non-esterified (‘free’) fatty acids] and adipocyte-
secreted adipokines. High levels of circulating NEFAs (in
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Figure 1 Evolution of insulin sensitivity, insulin secretion and

β-cell function in subjects with or without worsening glucose

tolerance

Results are geometric means for the insulin sensitivity index

(×10−5 min−1/pmol per l), the acute insulin secretion in response to

glucose (pmol/l), and the disposition index (×10−2 min−1), a measure

of β-cell function adjusted for the prevailing insulin sensitivity. Results

are derived from intravenous glucose tolerance tests performed at initial

assessment (open bars) and at follow up 7 years later (grey bars) in

subjects who did (progressors) or did not progress (non-progressors)

from normal to impaired glucose tolerance. *P < 0.05 for comparison

between progressors and non-progressors at follow up. Data taken from

[4].

particular of saturated NEFAs) and low adiponectin levels are
predictive of diabetes development [16–19]. It is conceivable
that NEFAs and adipokines play a direct role in pancreatic
β-cell failure in Type 2 diabetes. It remains to be investigated
whether the decrease in adiponectinaemia contributes to
pancreatic β-cell dysfunction. We have shown that pancreatic
β-cells abundantly express adiponectin receptors [20], but
the long-term effects of adiponectin on β-cells have not been
elucidated.

High-fat feeding impairs β-cell compensation for insulin
resistance and obesity [21,22]. Similarly, prolonged elevation
of circulating NEFAs by lipid infusion impairs pancreatic
β-cell function in vivo [23–26], particularly in individuals
with a genetic predisposition to Type 2 diabetes [24]. It will
be interesting to re-evaluate these findings in the light of
the recently discovered diabetes-risk genes [15]. Prolonged
exposure (2 days) of β-cells to high levels of NEFAs
in vitro reduces glucose-stimulated insulin secretion, at least
in part by inhibition of glucose oxidation and proinsulin
transcription and translation [27–30]. In addition to β-cell
dysfunction, NEFAs can induce β-cell death. The saturated

Figure 2 Model for the effects of adipocytes on pancreatic β-cell

function/mass and insulin sensitivity in the pathogenesis of

Type 2 diabetes

The intra-abdominal fat compartment is the main fat depot determining

plasma adiponectin levels and insulin sensitivity, while leptin levels are

determined by the subcutaneous fat mass [61,62]. An increase in the

intra-abdominal fat depot will decrease adiponectin and increase NEFA

(‘FFA’) levels, which will antagonize insulin effects in liver and muscle,

leading to increased gluconeogenesis and less efficient glucose uptake

respectively. In the presence of increased intra-abdominal adiposity, low

adiponectin levels and resultant hepatic insulin resistance, hepatic lipase

activity will increase, leading to a reduction in HDL cholesterol and an

increase in small dense LDL particles [63], as seen in the metabolic

syndrome. The insulin resistance associated with intra-abdominal fat

accumulation will also favour the development of glucose intolerance.

It is, however, the worsening of pancreatic β-cell function that is the

main determinant of the development of impaired glucose tolerance.

This loss in β-cell function and mass may also result from exposure to

NEFAs, lipoproteins and adipokines.

NEFA palmitate and, to a lesser extent, the unsaturated oleate
induce apoptosis in FACS-purified primary rat β-cells and
the insulin-producing cell line INS-1E [31,32]. Interestingly,
the equimolar combination of oleate and palmitate is not toxic
to pancreatic β-cells. Diet may therefore also have adverse
effects through qualitative changes in circulating NEFAs,
affecting the balance between saturated and unsaturated
NEFAs. As the circulating NEFA composition is rapidly
reflected in cellular NEFA content, increased supply of
saturated NEFAs may lead to β-cell apoptosis in vivo.

β-Cell lipotoxicity might also be mediated by lipoproteins
(Figure 2). Primary rat and human β-cells express the
LDL (low-density lipoprotein) receptor [33], which mediates
abundant LDL uptake [34]. The endocytosis of LDL can
cause β-cell death as a result of ROS (reactive oxygen
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species) formation [35]. Intracellular oxidative modification
of the LDL lipid moiety leads to formation of reactive
peroxides of cholesterol and NEFAs and propagation of
complex radical reactions. β-Cell LDL lipotoxicity could
be counteracted by antioxidants and by HDL (high-density
lipoprotein), which can enzymatically inactivate reactive fatty
acyl species that are generated during LDL oxidation. VLDL
(very-low-density lipoprotein) was also protective, probably
because it competes for the LDL receptor [35]. In human
β-cells, LDL and VLDL receptor-mediated endocytosis
contributes to progressive lipid accumulation in large lipid-
storing lysosomes [34]. This lipid accumulation may also
contribute to the dysfunction and death of pancreatic β-cells
due to a worsening of amyloid formation in the islets of
Langerhans [36–38].

Mechanisms of β-cell lipotoxicity
Studies in the Zucker diabetic fatty rat, a rodent model for
leptin insensitivity and obesity-related diabetes, suggested
that high circulating NEFAs induce massive triacylglycerol
accumulation in pancreatic islets [39,40]. It should be noted
that this triacylglycerol accumulation was observed using
triacylglycerol assays only, and not by microscopy. It was
suggested that the associated rise in cytoplasmic NEFA
levels induced expression of nitric oxide synthase and
nitric oxide-mediated β-cell apoptosis [41]. On the other
hand, our own findings indicated an inverse correlation
between triacylglycerol accumulation and β-cell apoptosis
[31], suggesting that NEFA esterification is not necessarily
deleterious. The greater toxicity of palmitate, compared with
oleate, has been attributed to its less efficient esterification
[31] and to the de novo synthesis of ceramides, as the ceramide
synthetase inhibitor fumonisin partially protected islet cell
apoptosis [42]. The desaturation of palmitate by stearoyl-
CoA desaturase was shown to protect the MIN6 β-cell line by
facilitating NEFA esterification [43]. NEFA-induced β-cell
death occurred in the absence of iNOS (inducible nitric oxide
synthase) mRNA expression and nitric oxide production
[31,32]. Consistent with the absence of iNOS induction, we
excluded a role for the transcription factor NF-κB (nuclear
factor-κB), which is pro-apoptotic in β-cells and regulates
iNOS expression [44]. Using electrophoretic mobility-shift
assays, immunostaining for the p65 subunit of NF-κB and
an NF-κB luciferase reporter, we did not observe NF-κB
activation in NEFA-exposed primary rat β-cells or INS-1E
cells [32]. By the same means, we also did not observe NF-κB
activation in β-cells exposed to high glucose [45], and did not
find evidence for NF-κB activation in high-glucose-exposed
human islets or in islets from Type 2 diabetic donors [46].
These findings differ from observations made in peripheral
tissues, in which NEFAs, via binding to Toll-like receptors,
activate NF-κB and thereby contribute to insulin resistance
[47].

The deleterious effects of NEFAs have been shown to be
augmented in the presence of high glucose concentrations
by some [48], but not by others [31]. Glucolipotoxicity was

attributed to glucose-mediated inhibition of mitochondrial
NEFA oxidation and increased esterification [48]. Favouring
mitochondrial NEFA β-oxidation has been shown to
be protective, whereas inhibiting it increased lipotoxicity
[48,49]. However, increasing mitochondrial oxidation and
oxidative phosphorylation generates more ROS, which have
also been implicated in NEFA toxicity. Pancreatic β-cells are
particularly susceptible to ROS, given that they express low
amounts of scavenging enzymes.

Previously, we have shown that NEFAs induce an ER
(endoplasmic reticulum) stress response in β-cells [32]. This
adaptive cellular response, also called the UPR (unfolded
protein response) regulates protein synthesis physiologically
to balance it with ER folding capacity, but, when prolonged
or exaggerated, it may trigger β-cell apoptosis [50]. Several
recent studies provided evidence for increased expression
of ER stress markers in β-cells in pancreatic sections from
Type 2 diabetic patients [51–53] and for ER expansion
[54]. The importance of ER stress signalling in β-cells and
its contribution to human β-cell apoptosis and diabetes is
supported by the discovery of neonatal forms of human
diabetes due to mutations in UPR transducers [55,56] or in
the insulin gene itself [57]. In addition to its putative role in
β-cell lipotoxicity, ER stress has also been proposed as one
of the cellular/molecular mechanisms linking obesity with
insulin resistance [58,59]. For a comprehensive review on the
role of ER stress in diabetes, see [60].

Conclusions
Accumulating evidence suggests that prolonged exposure to
increased lipid concentrations is detrimental to pancreatic
β-cells. These lipotoxic effects result in impaired insulin
secretion and β-cell apoptosis, and may contribute to the
loss of β-cell function in the pathogenesis of Type 2 diabetes.
Although the molecular mechanisms of lipotoxicity remain to
be fully elucidated, they probably involve oxidative and ER
stress. A better understanding of the molecular mechanisms
contributing to pancreatic β-cell loss will pave the way for the
development of novel approaches to prevent Type 2 diabetes.
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