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ABSTRACT. Regularization of ill-posed linear inverse problems via ℓ1 pe-
nalization has been proposed for cases where the solution is known to be (al-
most) sparse. One way to obtain the minimizer of such an ℓ1 penalized func-
tional is via an iterative soft-thresholding algorithm. We propose an alternative
implementation to ℓ1-constraints, using a gradient method, with projection on
ℓ1-balls. The corresponding algorithm uses again iterative soft-thresholding,
now with a variable thresholding parameter. We also propose accelerated ver-
sions of this iterative method, using ingredients of the (linear) steepest descent
method. We prove convergence in norm for one of these projected gradient
methods, without and with acceleration.

1. Introduction

Our main concern in this paper is the construction of iterative algorithms
to solve inverse problems with an ℓ1-penalization or an ℓ1-constraint, and
that converge faster than the iterative algorithm proposed in [21] (see also
formulas (2.5) and (2.6) below). Before we get into technical details, we
introduce here the background, framework, and notations for our work.

In many practical problems, one cannot observe directly the quantities
of most interest; instead their values have to be inferred from their effect
on observable quantities. When this relationship between observable y and
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interesting quantity f is (approximately) linear, as it is in surprisingly many
cases, the situation can be modeled mathematically by the equation

y = Af , (1.1)

where A is a linear operator mapping a vector space K (which we assume
to contain all possible “objects” f) to a vector space H (which contains all
possible data y). The vector spaces K and H can be finite– or infinite–
dimensional; in the latter case, we assume that K and H are (separable)
Hilbert spaces, and that A : K → H is a bounded linear operator. Our
main goal consists in reconstructing the (unknown) element f ∈ K, when
we are given y. If A is a “nice”, easily invertible operator, and if the data
y are free of noise, then this is a trivial task. Often, however, the mapping
A is ill-conditioned or not invertible. Moreover, typically (1.1) is only an
idealized version in which noise has been neglected; a more accurate model
is

y = Af + e , (1.2)

in which the data are corrupted by an (unknown) noise. In order to deal with
this type of reconstruction problem a regularization mechanism is required
[30]. Regularization techniques try, as much as possible, to take advantage
of (often vague) prior knowledge one may have about the nature of f . The
approach in this paper is tailored to the case when f can be represented by a
sparse expansion, i.e., when f can be represented by a series expansion with
respect to an orthonormal basis or a frame [20, 11] that has only a small
number of large coefficients. In this paper, as in [21], we model the sparsity
constraint by adding an ℓ1−term to a functional to be minimized; it was
shown in [21] that this assumption does indeed correspond to a regularization
scheme.

Several types of signals appearing in nature admit sparse frame ex-
pansions and thus, sparsity is a realistic assumption for a very large class
of problems. For instance, natural images are well approximated by sparse
expansions with respect to wavelets or curvelets [20, 8].

Sparsity has had already a long history of successes. The design of
frames for sparse representations of digital signals has led to extremely effi-
cient compression methods, such as JPEG2000 and MP3 [38]. A new gener-
ation of optimal numerical schemes has been developed for the computation
of sparse solutions of differential and integral equations, exploiting adaptive
and greedy strategies [12, 13, 14, 17, 18]. The use of sparsity in inverse prob-
lems for data recovery is the most recent step of this concept’s long career
of “simplifying and understanding complexity”, with an enormous potential
in applications [2, 9, 15, 19, 21, 22, 23, 25, 24, 33, 35, 34, 37, 39, 43]. In
particular, the observation that it is possible to reconstruct sparse signals
from vastly incomplete information just seeking for the ℓ1-minimal solutions
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[7, 6, 26, 40] has led to a new line of research called sparse recovery or
compressed sensing, with very fruitful mathematical and applied results.

2. Framework and Notations

Before starting our discussion let us briefly introduce some of the notations
we will need. For some countable index set Λ we denote by ℓp = ℓp(Λ),
1 ≤ p ≤ ∞, the space of real sequences x = (xλ)λ∈Λ with norm

‖x‖p :=
(∑

λ∈Λ
|xλ|p

)1/p

, 1 ≤ p <∞

and ‖x‖∞ := supλ∈Λ |xλ| as usual. For simplicity of notation, in the follow-
ing ‖ · ‖ will denote the ℓ2-norm ‖ · ‖2.
As is customary for an index set, we assume we have a natural enumeration
order for the elements of Λ, using (implicitly) a one-to-one map N from Λ
to N. In some convergence proofs, we shall use the shorthand notations |λ|
for N (λ), and (in the case where Λ is infinite) λ→ ∞ for N (λ) → ∞.
We also assume that we have a suitable frame {ψλ : λ ∈ Λ} ⊂ K indexed by
the countable set Λ. This means that there exist constants c1, c2 > 0 such
that

c1‖f‖2K ≤
∑

λ∈Λ
|〈f, ψλ〉|2 ≤ c2‖f‖2K, for all f ∈ K. (2.1)

Orthonormal bases are particular examples of frames, but there also ex-
ist many interesting frames in which the ψλ are not linearly independent.
Frames allow for a (stable) series expansion of any f ∈ K of the form

f =
∑

λ∈Λ
xλψλ =: Fx , (2.2)

where x = (xλ)λ∈Λ ∈ ℓ2(Λ). The linear operator F : ℓ2(Λ) → K (called
the synthesis map in frame theory) is bounded because of (2.1). When
{ψλ : λ ∈ Λ} is a frame but not a basis, the coefficients xλ need not be
unique. For more details on frames and their differences from bases we refer
to [11].

We shall assume that f is sparse, i.e., that f can be written by a series of
the form (2.2) with only a small number of non-vanishing coefficients xλ with
respect to the frame {ψλ}, or that f is compressible, i.e., that f can be well-
approximated by such a sparse expansion. This can be modeled by assuming
that the sequence x is contained in a (weighted) ℓ1(Λ)-space. Indeed, the
minimization of the ℓ1(Λ) norm promotes such sparsity. (This has been
known for many years, and put to use in a wide range of applications,
most notably in statistics. David Donoho calls one form of it the Logan
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phenomenon in [28] – see also [27] –, after its first observation by Ben Logan
[36].) These considerations lead us to model the reconstruction of a sparse
f as the minimization of the following functional:

Fτ (x) = ‖Kx− y‖2H + 2τ‖x‖1, (2.3)

where we will assume that the data y and the linear operator K := A ◦ F :
ℓ2(Λ) → H are given. The second term in (2.3) is often called the penaliza-
tion or regularizing term; the first term goes by the name of discrepancy,

D(x) := ‖Kx− y‖2H. (2.4)

In what follows we shall drop the subscript H, because the space in which
we work will always be clear from the context. We discuss the problem of
finding (approximations to) x̄(τ) in ℓ2(Λ) that minimize the functional (2.3).
(We adopt the usual convention that for u ∈ ℓ2(Λ) \ ℓ1(Λ), the penalty term
“equals” ∞, and that, for such u, Fτ (u) > Fτ (x) for all x ∈ ℓ1(Λ). Since
we want to minimize Fτ , we shall consider, implicitly, only x ∈ ℓ1(Λ).) The
solutions f̄(τ) to the original problem are then given by f̄(τ) = Fx̄(τ).

Several authors have proposed independently an iterative soft-threshold-
ing algorithm to approximate the solution x̄(τ) [31, 41, 42, 29]. More pre-
cisely, x̄(τ) is the limit of sequences x(n) defined recursively by

x(n+1) = Sτ
[
x(n) +K∗y −K∗Kx(n)

]
, (2.5)

starting from an arbitrary x(0), where Sτ is the soft-thresholding operation
defined by Sτ (x)λ = Sτ (xλ) with

Sτ (x) =





x− τ x > τ
0 |x| ≤ τ
x+ τ x < −τ

. (2.6)

Convergence of this algorithm was proved in [21]. Soft-thresholding plays a
role in this problem because it leads to the unique minimizer of a functional
combining ℓ2 and ℓ1−norms, i.e., (see [10, 21])

Sτ (a) = arg min
x∈ℓ2(Λ)

(
‖x− a‖2 + 2τ‖x‖1

)
. (2.7)

We will call the iteration (2.5) the iterative soft-thresholding algorithm or
the thresholded Landweber iteration.

3. Discussion of the Thresholded Landweber
Iteration

The problem of finding the sparsest solution to the under-determined linear
equation Kx = y is a hard combinatorial problem, not tractable numerically
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FIGURE 1 The path, in the ‖x‖1 vs. ‖Kx − y‖2 plane, followed by the iterates x(n)

of three different iterative algorithms. The operator K and the data y are taken from a
seismic tomography problem [37] (see also Section 6). The boxes (in both (a) and (b))
correspond to the thresholded Landweber algorithm. In this example, iterative thresholded
Landweber (2.5) first overshoots the ℓ1 norm of the limit (represented by the fat dot), and
then requires a large number of iterations to reduce ‖x(n)‖1 again (500 are shown in this
figure). In (a) the crosses correspond to the path followed by the iterates of the projected
Landweber iteration (3.1); in (b) the triangles correspond to the projected steepest descent
iteration (3.2); in both cases, only 15 iterates are shown. The discrepancy decreases more
quickly for projected steepest descent than for the projected Landweber algorithm. How
this translates into faster convergence (in norm) is discussed in Section 6. The solid line
corresponds to the limit trade-off curve, generated by x̄(τ ) for decreasing values of τ > 0.
The vertical axes uses a logarithmic scale for clarity.

except in relatively low dimensions. For some classes of K, however, one
can prove that the problem reduces to the convex optimization problem of
finding the solution with the smallest ℓ1 norm [26, 7, 4, 6]. Even for K
outside this class, ℓ1− minimization seems to lead to very good approxima-
tions to the sparsest solutions. It is in this sense that an algorithm of type
(2.5) could conceivably be called ‘fast’: it is fast compared to a brute-force
exhaustive search for the sparsest x.

A more honest evaluation of the speed of convergence of algorithm (2.5)
is a comparison with linear solvers that minimize the corresponding ℓ2 penal-
ized functional, such as, e.g., the conjugate gradient method. One finds, in
practice, that the thresholded Landweber iteration (2.5) is not competitive
at all in this comparison. It is, after all, the composition of thresholding with
the (linear) Landweber iteration x(n+1) = x(n)+K∗y−K∗Kx(n), which is a
gradient descent algorithm with a fixed step size, known to converge usually
quite slowly; interleaving it with the nonlinear thresholding operation does
unfortunately not change this slow convergence. On the other hand, this
nonlinearity did foil our attempts to “borrow a leaf” from standard linear
steepest descent methods by using an adaptive step length – once we start
taking larger steps, the algorithm seems to no longer converge in at least
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some numerical experiments.
We take a closer look at the characteristic dynamics of the thresh-

olded Landweber iteration in Figure 2. As this plot of the discrepancy
D(x(n)) = ‖Kx(n) − y‖2 versus ‖x(n)‖1 shows, the algorithm converges ini-
tially relatively fast, then it overshoots the value ‖x̄(τ)‖1 (where x̄(τ) :=
limn→∞ x(n)), and it takes very long to re-correct back. In other words,
starting from x(0) = 0, the algorithm generates a path {x(n); n ∈ N} that
is initially fully contained in the ℓ1-ball BR := {x ∈ ℓ2(Λ); ‖x‖1 ≤ R}, with
R := ‖x̄(τ)‖1. Then it gets out of the ball to slowly inch back to it in
the limit. A first intuitive way to avoid this long “external” detour is to
force the successive iterates to remain within the ball BR. One method to
achieve this is to substitute for the thresholding operations the projection
PBR

, where, for any closed convex set C, and any x, we define PC(x) to
be the unique point in C for which the ℓ2−distance to x is minimal. With
a slight abuse of notation, we shall denote PBR

by PR; this will not cause
confusion, because it will be clear from the context whether the subscript
of P is a set or a positive number. We thus obtain the following algorithm:
Pick an arbitrary x(0) ∈ ℓ2(Λ), for example x(0) = 0, and iterate

x(n+1) = PR

[
x(n) +K∗y −K∗Kx(n)

]
. (3.1)

We will call this the projected Landweber iteration.
The typical dynamics of this projected Landweber algorithm are illus-

trated in Fig. 2(a). The norm ‖x(n)‖1 no longer overshoots R, but quickly
takes on the limit value (i.e., ‖x̄(τ)‖1); the speed of convergence remains
very slow, however. In this projected Landweber iteration case, modifying
the iterations by introducing an adaptive “descent parameter” β(n) > 0 in
each iteration, defining x(n+1) by

x(n+1) = PR

[
x(n) + β(n)K∗(y −Kx(n))

]
, (3.2)

does lead, in numerical simulations, to promising, converging results (in
which it differs from the soft-thresholded Landweber iteration, where intro-
ducing such a descent parameter did not lead to numerical convergence, as
noted above).

The typical dynamics of this modified algorithm are illustrated in Fig.
2(b), which clearly shows the larger steps and faster convergence (when
compared with the projected Landweber iteration in Fig. 2(a)). We shall
refer to this modified algorithm as the projected gradient iteration or the
projected steepest descent; it will be the main topic of this paper.

The main issue is to determine how large we can choose the successive
β(n), and still prove norm convergence of the algorithm in ℓ2(Λ).

There exist results in the literature on convergence of projected gra-
dient iterations, where the projections are (as they are here) onto convex
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sets, see, e.g., [1, 16] and references therein. These results treat iterative
projected gradient methods in much greater generality than we need: they
allow more general functionals than D, and the convex set on which the
iterative procedure projects need not be bounded. On the other hand, these
general results typically have the following restrictions:

• The convergence in infinite-dimensional Hilbert spaces (i.e., Λ is
countable but infinite) is proved only in the weak sense and often
only for subsequences;

• In [1] the descent parameters are typically restricted to cases for
which limn→∞ β(n) = 0. In [16], it is shown that the algorithm con-

verges weakly for any choice of β(n) ∈
[
ε, 2−ε

‖K‖

]
, for ε > 0 arbitrarily

small. Of most interest to us is the case where the β(n) are picked
adaptively, can grow with n, and are not limited to values below
2

‖K‖ ; this case is not covered by the methods of either [1] or [16].

To our knowledge there are no results in the literature for which the
whole sequence (x(n))n∈N converges in the Hilbert space norm to a unique
accumulation point, for “descent parameters” β(n) ≥ 2. It is worthwhile
emphasizing that strong convergence is not automatic: in [16, Remark 5.12],
the authors provide a counterexample in which strong convergence fails.
(This question had been open for some time.) One of the main results
of this paper is to prove a theorem that establishes exactly this type of
convergence; see Theorem 1 below. Moreover, the result is achieved by
imposing a choice of β(n) ≥ 1 which ensures a monotone decay of a suitable
energy. This establishes a principle of best descent similar to the well-known
steepest-descent in unconstrained minimization.

Before we get to this theorem, we need to build some more machinery
first.

4. Projections onto ℓ1-Balls via Thresholding
Operators

In this section we discuss some properties of ℓ2-projections onto ℓ1-balls.
In particular, we investigate their relations with thresholding operators and
their explicit computation. We also estimate the time complexity of such
projections in finite dimensions.

We first observe a useful property of the soft-thresholding operator.

Lemma 1. For any fixed a ∈ ℓ2(Λ) and for τ > 0, ‖Sτ (a)‖1 is a piecewise
linear, continuous, decreasing function of τ ; moreover, if a ∈ ℓ1(Λ) then
‖S0(a)‖1 = ‖a‖1 and ‖Sτ (a)‖1 = 0 for τ ≥ maxi |ai|.

Proof: ‖Sτ (a)‖1 =
∑

λ |Sτ (aλ)| =
∑

λ Sτ (|aλ|) =
∑

|aλ|>τ (|aλ| − τ); the
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τ

‖Sτ (a)‖1
‖a‖1

τ

R

maxi |ai |

FIGURE 2 For a given vector a ∈ ℓ2, ‖Sτ (a)‖1 is a piecewise linear continuous and
decreasing function of τ (strictly decreasing for τ < maxi |ai|) . The knots are located at
{|ai|, i : 1 . . .m} and 0. Finding τ such that ‖Sτ (a)‖1 = R ultimately comes down to a
linear interpolation. The figure is made for the finite dimensional case.

sum in the right hand side is finite for τ > 0. 2

A schematic illustration is given in Figure 4.

The following lemma shows that the ℓ2 projection PR(a) can be ob-
tained by a suitable thresholding of a.

Lemma 2. If ‖a‖1 > R, then the ℓ2 projection of a on the ℓ1 ball with
radius R is given by PR(a) = Sµ(a) where µ (depending on a and R) is
chosen such that ‖Sµ(a)‖1 = R. If ‖a‖1 ≤ R then PR(a) = S0(a) = a.

Proof: Suppose ‖a‖1 > R. Because, by Lemma 1, ‖Sµ(a)‖1 is continu-
ous in µ and ‖Sµ(a)‖1 = 0 for sufficiently large µ, we can choose µ such that
‖Sµ(a)‖1 = R. (See Figure 4.) On the other hand (see above, or [10, 21]),
b = Sµ(a) is the unique minimizer of ‖x− a‖2 + 2µ‖x‖1, i.e.,

‖b− a‖2 + 2µ‖b‖1 < ‖x− a‖2 + 2µ‖x‖1

for all x 6= b. Since ‖b‖1 = R, it follows that

∀x ∈ BR, x 6= b : ‖b− a‖2 < ‖x− a‖2

Hence b is closer to a than any other x in BR. In other words, PR(a) = b =
Sµ(a). 2

These two lemmas prescribe the following simple recipe for computing
the projection PR(a). In a first step, sort the absolute values of the com-
ponents of a (an O(m logm) operation if #Λ = m is finite), resulting in
the rearranged sequence (a∗ℓ )ℓ=1,...,m, with a∗ℓ ≥ a∗ℓ+1 ≥ 0 for all ℓ. Next,
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perform a search to find k such that

‖Sa∗k(a)‖1 =
k−1∑

ℓ=1

(a∗ℓ − a∗k) ≤ R <
k∑

ℓ=1

(
a∗ℓ − a∗k+1

)
= ‖Sa∗k+1

(a)‖1

or equivalently,

‖Sa∗k(a)‖1 =

k−1∑

ℓ=1

ℓ
(
a∗ℓ − a∗ℓ+1

)
≤ R <

k∑

ℓ=1

ℓ
(
a∗ℓ − a∗ℓ+1

)
= ‖Sa∗k+1

(a)‖1;

the complexity of this step is again O(m logm). Finally, set

ν := k−1
(
R− ‖Sa∗k(a)‖1

)
, and µ := a∗k + ν. Then

‖Sµ(a)‖1 =
∑

i∈Λ
max(|ai| − µ, 0) =

k∑

ℓ=1

(a∗ℓ − µ)

=

k−1∑

ℓ=1

(a∗ℓ − a∗k) + kν = ‖Sa∗k(a)‖1 + kν = R.

These formulas were also derived in [35, Lemma 4.1 and Lemma 4.2], by
observing that PR(a) = a− S∞R (a), where

S∞R (a) = arg min
x∈Rm

(‖x− a‖2 + 2R‖x‖∞), x ∈ Rm. (4.1)

The latter is again a thresholding operator, but it is related to an ℓ∞ penalty
term. Similar descriptions of the ℓ2 projection onto ℓ1 balls appear also in
[5].

Finally, PR has the following additional properties:

Lemma 3. For any x ∈ ℓ2(Λ), PR(x) is characterized as the unique vector
in BR such that

〈w − PR(x), x− PR(x)〉 ≤ 0, for all w ∈ BR. (4.2)

Moreover the projection PR is non-expansive:

‖PR(x)− PR(x
′)‖ ≤ ‖x− x′‖ (4.3)

for all x, y ∈ ℓ2(Λ).

The proof is standard for projection operators onto convex sets; we include
it because its technique will be used often in this paper.
Proof: Because BR is convex, (1 − t)PR(x) + t w ∈ BR for all w ∈ BR and
t ∈ [0, 1]. It follows that ‖x− PR(x)‖2 ≤ ‖x− [(1− t)PR(x) + t w] ‖2 for all
t ∈ [0, 1]. This implies

0 ≤ −2t 〈w − PR(x), x− PR(x)〉+ t2 ‖w − PR(x)‖2
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for all t ∈ [0, 1]. It follows that

〈w − PR(x), x − PR(x)〉 ≤ 0 ,

which proves (4.2).
Setting w = PR(x

′) in (4.2), we get, for all x, x′,

〈PR(x
′)− PR(x), x− PR(x)〉 ≤ 0

Switching the role of x and x′ one finds:

〈PR(x
′)− PR(x), x

′ − PR(x
′)〉 ≥ 0

By combining these last two inequalities, one finds:

〈PR(x
′)− PR(x), x

′ − x− PR(x
′) + PR(x)〉 ≥ 0

or
‖PR(x

′)− PR(x)‖2 ≤ 〈PR(x
′)− PR(x), x

′ − x〉 ;
by Cauchy-Schwarz this gives

‖PR(x
′)− PR(x)‖2 ≤ 〈PR(x

′)− PR(x), x
′ − x〉 ≤ ‖PR(x

′)− PR(x)‖‖x′ − x‖ ,

from which inequality (4.3) follows. 2

5. The Projected Gradient Method

We have now collected all the terminology needed to identify some conditions
on the β(n) that will ensure convergence of the x(n), defined by (3.2), to x̃R,
the minimizer in BR of D(x) = ‖Kx − y‖2. For notational simplicity we
set r(n) = K∗(y −Kx(n)). With this notation, the thresholded Landweber
iteration (2.5) can be written as

x(n+1) = Sτ
(
x(n) + r(n)

)
. (5.1)

As explained above, we consider, instead of straightforward soft-thresholding
with fixed τ , adapted soft-thresholding operations Sµ(R,x(n)+r(n)) that corre-
spond to the projection operator PR:

x(n+1) = PR

(
x(n) + r(n)

)
. (5.2)

The dependence of µ(R,x(n)+ r(n)) on R is described above; R is kept fixed
throughout the iterations. If, for a given value of τ , R were picked such that
R = Rτ := ‖x̄τ‖1 (where x̄τ is the minimizer of ‖Kx− y‖2 + 2τ‖x‖1), then
Lemma 2 would ensure that x̄τ = x̃R. Of course, we don’t know, in general,
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the exact value of ‖x̄τ‖1, so that we can’t use it as a guideline to pick R. In
practice, however, it is customary to determine x̄τ for a range of τ -values;
this then amounts to the same as determining x̃R for a range of R.
We now propose to change the step r(n) into a step β(n)r(n) (in the spirit of
the “classical” steepest descent method), and to define the algorithm: Pick
an arbitrary x(0) ∈ ℓ2(Λ), for example x(0) = 0, and iterate

x(n+1) = PR

(
x(n) + β(n)r(n)

)
. (5.3)

In this section we prove the norm convergence of this algorithm to a min-
imizer x̃R of ‖Kx − y‖2 in BR, under some assumptions on the descent
parameters β(n) ≥ 1.

5.1 General properties

We begin with the following characterization of the minimizers of D on BR.

Lemma 4. The vector x̃R ∈ ℓ2(Λ) is a minimizer of D(x) = ‖Kx − y‖2
on BR if and only if

PR(x̃R + βK∗(y −Kx̃R)) = x̃R, (5.4)

for any β > 0, which in turn is equivalent to the requirement that

〈K∗(y −Kx̃R), w − x̃R〉 ≤ 0, for all w ∈ BR. (5.5)

To lighten notation, we shall drop the subscript R on x̃R whenever no
confusion is possible.
Proof: If x̃ minimizes D on BR, then for all w ∈ BR, and for all t ∈ [0, 1],

D(x̃) ≤ D((1− t)x̃+ tw), or

‖Kx̃− y‖2 ≤ ‖Kx̃− y + tK(w − x̃)‖2, or
0 ≤ 2t〈Kx̃− y,K(w − x̃)〉+ t2‖K(w − x̃)‖2.

This implies
〈K∗(y −Kx̃), w − x̃〉 ≤ 0. (5.6)

It follows from this that, for all w ∈ BR and for all β > 0,

〈x̃+ βK∗(y −Kx̃)− x̃, w − x̃〉 ≤ 0, (5.7)

By Lemma 3 this implies (5.4).
Conversely, if PR(x̃+ βK∗(y −Kx̃)) = x̃, then for all w ∈ BR and for

all t ∈ [0, 1]:

‖(x̃+ βK∗(y −Kx̃))− ((1− t)x̃+ tw)‖2 ≥ ‖(x̃+ βK∗(y −Kx̃))− x̃‖2,
or ‖βK∗(y −Kx̃) + t(x̃−w)‖2 ≥ ‖βK∗(y −Kx̃))‖2,

⇒ 2tβ〈K∗(y −Kx̃), x̃− w〉+ t2‖x̃− w‖2 ≥ 0.



12 Ingrid Daubechies, Massimo Fornasier, and Ignace Loris

This implies

〈K∗(y −Kx̃), x̃− w〉 ≥ 0 or 〈y −Kx̃,K(x̃− w)〉 ≥ 0.

In other words:

−‖y −Kx̃‖2 − ‖Kx̃−Kw‖2 + ‖(y −Kx̃) +K(x̃−w)‖2 ≥ 0

or
D(x̃) + ‖K(x̃− w)‖2 ≤ D(w).

This implies that x̃ minimizes D on BR. 2

The minimizer of D on BR need not be unique. We have, however

Lemma 5. If x̃, ˜̃x are two distinct minimizers of D(x) = ‖Kx − y‖2 on
BR, then Kx̃ = K ˜̃x, i.e., x̃− ˜̃x ∈ kerK.
Conversely, if x̃, ˜̃x ∈ BR, if x̃ minimizes ‖Kx − y‖2 and if x̃ − ˜̃x ∈ kerK
then ˜̃x minimizes ‖Kx− y‖2 as well.

Proof: The converse is obvious; we prove only the direct statement.
From the last inequality in the proof of Lemma 4 we obtain D(x̃)+ ‖K(x̃−
˜̃x)‖2 ≤ D(˜̃x) = D(x̃), which implies ‖K(˜̃x− x̃)‖ = 0. 2

In what follows we shall assume that the minimizers of D in BR are not
global minimizers for D, i.e., that K∗(y −Kx̃) 6= 0. We know from Lemma
2 that PR(a) can be computed for ‖a‖1 > R simply by finding the value
µ > 0 such that ‖Sµ(a)‖1 = R; one has then PR(a) = Sµ(a). Using this we
prove

Lemma 6. Let u be the common image under K of all minimizers of D
on BR, i.e., for all x̃ minimizing D in BR, Kx̃ = u. Then there exists a
unique value τ > 0 such that, for all β > 0 and for all minimizing x̃

PR(x̃+ βK∗(y − u)) = Sτβ(x̃+ βK∗(y − u)). (5.8)

Moreover, for all λ ∈ Λ we have that if there exists a minimizer x̃ such that
x̃λ 6= 0, then

|(K∗(y − u))λ| = τ. (5.9)

Proof: From Lemma 2 and Lemma 4, we know that for each minimizing
x̃, and each β > 0, there exists a unique µ(x̃, β) such that

x̃ = PR(x̃+ βK∗(y − u)) = Sµ(x̃,β)(x̃+ βK∗(y − u)). (5.10)

For x̃λ 6= 0 we have x̃λ = x̃λ + β(K∗(y − u))λ − µ(x̃, β)sgn x̃λ; this implies
sgn x̃λ = sgn (x̃λ + β(K∗(y − u))λ) and also that |(K∗(y − u))λ| = 1

βµ(x̃, β).

If x̃λ = 0 then |(K∗(y − u))λ| ≤ 1
βµ(x̃, β). It follows that τ := µ(x̃, β)/β =
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‖K∗(y − u)‖∞ does not depend on the choice of x̃. Moreover, if there is a
minimizer x̃ for which x̃λ 6= 0, then |(K∗(y − u))λ| = τ . 2

Lemma 7. If, for some λ ∈ Λ, two minimizers x̃, ˜̃x satisfy x̃λ 6= 0 and
˜̃xλ 6= 0, then sgn x̃λ = sgn ˜̃xλ.

Proof: This follows from the arguments in the previous proof; x̃λ 6= 0
implies (K∗(y − u))λ = τ sgn x̃λ. Similarly, ˜̃xλ 6= 0 implies (K∗(y − u))λ) =
τ sgn ˜̃xλ, so that sgn x̃λ = sgn ˜̃xλ. 2

This immediately leads to

Lemma 8. For all x̃ ∈ BR that minimize D, there are only finitely many
x̃λ 6= 0. More precisely,

{λ ∈ Λ : x̃λ 6= 0} ⊂ Γ := {λ ∈ Λ : |(K∗(y−u))λ| = ‖(K∗(y−u))‖∞}. (5.11)

Moreover, if the vector e is defined by

eλ =

{
0, λ /∈ Γ
sgn((K∗(y − u))λ), λ ∈ Γ,

(5.12)

then 〈x̃, e〉 = R for each minimizer x̃ of D in BR.

Proof: We have already proved the set inclusion. Note that, since
K∗(y − u) ∈ ℓ2(Λ), the set Γ is necessarily a finite set. We also have, for
each minimizer x̃,

〈x̃, e〉 =
∑

λ∈Γ
x̃λeλ

=
∑

λ∈Γ, x̃λ 6=0

x̃λ sgn((K
∗(y − u))λ)

=
∑

λ∈Γ, x̃λ 6=0

x̃λ sgn(x̃λ) = ‖x̃‖1 = R.

2

Remark 1. By changing, if necessary, signs of the canonical basis vectors,
we can assume, without loss of generality, that eλ = +1 for all λ ∈ Γ. We
shall do so from now on.

5.2 Weak convergence to minimizing accumulation points

We shall now impose some conditions on the β(n). We shall see examples in
Section 6 where these conditions are verified.
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Definition 1. We say that the sequence
(
β(n)

)
n∈N satisfies Condition (B)

with respect to the sequence
(
x(n)

)
n∈N if there exists n0 so that:

(B1) β̄ := sup{β(n) ; n ∈ N } < ∞ and inf{β(n) ; n ∈ N } ≥ 1

(B2) β(n)‖K(x(n+1) − x(n))‖2 ≤ r‖x(n+1) − x(n)‖2 ∀n ≥ n0.

We shall often abbreviate this by saying that ‘the β(n) satisfy Condition
(B)’. The constant r used in this definition is r := ‖K∗K‖ℓ2→ℓ2 < 1. (We can
always assume, without loss of generality, that ‖K‖ℓ2→H < 1; if necessary,
this can be achieved by a suitable rescaling of K and y.)

Note that the choice β(n) = 1 for all n, which corresponds to the pro-
jected Landweber iteration, automatically satisfies Condition (B); since we
shall show below that we obtain convergence when the β(n) satisfy Condi-
tion (B), this will then establish, as a corollary, convergence of the projected
Landweber iteration algorithm (3.1) as well. We shall be interested in choos-
ing, adaptively, larger values of β(n); in particular, we like to choose β(n) as
large as possible.

Remark 2.

• Condition (B) is inspired by the standard length-step in the steepest
descent algorithm for the (unconstrained, unpenalized) functional
‖Kx− y‖2. In this case, one can speed up the standard Landweber
iteration x(n+1) = x(n)+K∗(y−Kx(n)) by defining instead x(n+1) =
x(n)+αK∗(y−Kx(n)), where α is picked so that it gives the largest
decrease of ‖Kx− y‖2 in this direction. This gives

α =
[
‖K∗(y −Kx(n))‖2

] [
‖KK∗(y −Kx(n))‖2

]−1
. (5.13)

In this linear case, one easily checks that α also equals

α =
[
‖x(n+1) − x(n)‖2

] [
‖K(x(n+1) − x(n))‖2

]−1
; (5.14)

in fact, it is this latter expression for α (which inspired the formula-
tion of Condition (B)) that is most useful in proving convergence of
the steepest descent algorithm.

• Because the definition of x(n+1) involves β(n), the inequality (B2),
which uses x(n+1) to impose a limitation on β(n), has an “implicit”
quality. In practice, it may not be straightforward to pick β(n) ap-
propriately; one could conceive of trying first a “greedy” choice, such

as e.g. ‖r(n)‖2
‖Kr(n)‖2 ; if this value works, it is retained; if it doesn’t, it

can be gradually decreased (by multiplying it with a factor slightly
smaller than 1) until (B2) is satisfied. (A similar way of testing
appropriate step lengths is adopted in [32].)



Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints 15

In this section we prove that if the sequence (x(n))n∈N is defined iter-
atively by (3.2), and if the β(n) used in the iteration satisfy Condition (B)
(with respect to the x(n)), then the (weak) limit of any weakly convergent
subsequence of (x(n))n∈N is necessarily a minimizer of D in BR.

Lemma 9. Assume ‖K‖ℓ2→H < 1 and β ≥ 1. For arbitrary fixed x in BR,
define the functional Fβ(·;x) by

Fβ(w;x) := ‖Kw − y‖2 − ‖K(w − x)‖2 + 1

β
‖w − x‖2 . (5.15)

Then there is a unique choice for w in BR that minimizes the restriction
to BR of Fβ(w;x). We denote this minimizer by TR(β;x); it is given by
TR(β;x) = PR(x+ βK∗(y −Kx)).

Proof: First of all, observe that the functional Fβ(·, x) is strictly convex,
so that it has a unique minimizer on BR; let x̂ be this minimizer. Then for
all w ∈ BR and for all t ∈ [0, 1]

Fβ(x̂;x) ≤ Fβ((1− t)x̂+ tw;x)

⇒ 2t

[
〈Kx̂− y,K(w − x̂)〉 − 〈Kx̂−Kx,K(w − x̂)〉+ 1

β
〈x̂− x,w − x̂〉

]

+
t2

β
‖w − x̂‖2 ≥ 0

⇒ [β〈Kx− y,K(w − x̂)〉+ 〈x̂− x,w − x̂〉] + t

2
‖w − x̂‖2 ≥ 0

⇒ 〈x̂− x+ βK∗(Kx− y), w − x̂〉 ≥ 0

⇒ 〈x+ βK∗(y −Kx)− x̂, w − x̂〉 ≤ 0.

The latter implication is equivalent to x̂ = PR(x+βK
∗(y−Kx)) by Lemma

3. 2

An immediate consequence is

Lemma 10. If the x(n) are defined by (3.2), and the β(n) satisfy Condition
(B) with respect to the x(n), then the sequence

(
D(x(n))

)
n∈N is decreasing,

and

lim
n→∞

‖x(n+1) − x(n)‖ = 0. (5.16)

Proof: Comparing the definition of x(n+1) in (3.2) with the statement
of Lemma 9, we see that x(n+1) = TR(β

(n);x(n)), so that x(n+1) is the mini-
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mizer, for x ∈ BR, of Fβ(n)(x;x(n)). Setting γ = 1
r − 1 > 0, we have

D(x(n+1)) ≤ D(x(n+1)) + γ‖K(x(n+1) − x(n))‖2
= ‖Kx(n+1) − y‖2 + (1 + γ)‖K(x(n+1) − x(n))‖2 − ‖K(x(n+1) − x(n))‖2

≤ ‖Kx(n+1) − y‖2 − ‖K(x(n+1) − x(n))‖2 + 1

β(n)
‖x(n+1) − x(n)‖2

= Fβ(n)(x(n+1);x(n)) ≤ Fβ(n)(x(n);x(n)) = D(x(n)).

We also have

−Fβ(n+1)(x(n+1);x(n+1)) + Fβ(n)(x(n+1);x(n))

=
1

β(n)
‖x(n+1) − x(n)‖2 − ‖K(x(n+1) − x(n))‖2

≥ 1− r

β(n)
‖x(n+1) − x(n)‖2 ≥ 1− r

β̄
‖x(n+1) − x(n)‖2.

This implies

N∑

n=0

‖x(n+1) − x(n)‖2 ≤ β̄

1− r

N∑

n=0

(
Fβ(n)(x(n+1);x(n))− Fβ(n+1)(x(n+1);x(n+1))

)

≤ β̄

1− r

N∑

n=0

(
Fβ(n)(x(n);x(n))− Fβ(n+1)(x(n+1);x(n+1))

)

=
β̄

1− r

(
Fβ(0)(x(0);x(0))− Fβ(N+1)(x(N+1);x(N+1))

)

≤ β̄

1− r
Fβ(0)(x(0);x(0)).

Therefore, the series
∑∞

n=0 ‖x(n+1)−x(n)‖2 converges and limn→∞ ‖x(n+1)−
x(n)‖ = 0. 2

Because the set {x(n);n ∈ N} is bounded in ℓ1(Λ) (xn are all in BR),
it is bounded in ℓ2(Λ) as well (since ‖a‖2 ≤ ‖a‖1). Because bounded closed
sets in ℓ2(Λ) are weakly compact, the sequence (x(n))n∈N must have weak
accumulation points. We now have

Proposition 1 Weak convergence to minimizing accumulation points.
If x# is a weak accumulation point of (x(n))n∈N then x# minimizes D in BR.

Proof: Let (x(nj))j∈N be a subsequence converging weakly to x#. Then
for all a ∈ ℓ2(Λ)

〈Kx(nj), a〉 = 〈x(nj),K∗a〉−−−→
j→∞ 〈x#,K∗a〉 = 〈Kx#, a〉. (5.17)

Therefore w-limj→∞Kx(nj) = Kx#. From Lemma 10 we have ‖x(n+1) −
x(n)‖−−−→n→∞ 0, so that we also have w-limj→∞ x(nj+1) = x#. By the definition
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of x(n+1) (x(n+1) = PR(x
(n) + β(n)K∗(y − Kx(n)))), and by Lemma 3, we

have, for all w ∈ BR,

〈x(n) + β(n)K∗(y −Kx(n))− x(n+1), w − x(n+1)〉 ≤ 0. (5.18)

In particular, specializing to our subsequence and taking the lim sup, we
have

lim sup
j→∞

〈x(nj) − x(nj+1) + β(nj)K∗(y −Kx(nj)), w − x(nj+1)〉 ≤ 0. (5.19)

Because ‖x(nj ) − x(nj+1)‖ → 0, for j → ∞, and w − x(nj+1) is uniformly
bounded, we have

lim
j→∞

|〈x(nj ) − x(nj+1), w − x(nj+1)〉| = 0, (5.20)

so that our inequality reduces to

lim sup
j→∞

β(nj) 〈K∗(y −Kx(nj)), w − x(nj+1)〉 ≤ 0. (5.21)

By adding β(nj)〈K∗(y−Kx(nj+1)), x(nj+1)−x(nj)〉, which also tends to zero
as j → ∞, we transform this into

lim sup
j→∞

β(nj) 〈K∗(y −Kx(nj)), w − x(nj)〉 ≤ 0. (5.22)

Since the β(nj) are all in [1, β̄], it follows that

lim sup
j→∞

〈K∗(y −Kx(nj)), w − x(nj)〉 ≤ 0, (5.23)

or

lim sup
j→∞

[
〈K∗y,w − x#〉 − 〈K∗Kx#, w〉 + ‖Kx(nj)‖2

]
≤ 0, (5.24)

where we have used the weak convergence of x(nj). This can be rewritten as

〈K∗(y −Kx#), w − x#〉+ lim sup
j→∞

[
‖Kx(nj)‖2 − ‖Kx#‖2

]
≤ 0. (5.25)

Since w-limj∈NKx(nj) = Kx#, we have

lim sup
j→∞

[
‖Kx(nj)‖2 − ‖Kx#‖2

]
≥ 0.

We conclude thus that

〈K∗(y −Kx#), w − x#〉 ≤ 0, for all w ∈ BR, (5.26)

so that x# is a minimizer of D on BR, by Lemma 4. 2
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5.3 Strong convergence to minimizing accumulation points

In this subsection we show how the weak convergence established in the
preceding subsection can be strengthened into norm convergence, again by a
series of lemmas. Since the distinction between weak and strong convergence
makes sense only when the index set Λ is infinite, we shall implicitly assume
this is the case throughout this section.

Lemma 11. For the subsequence (x(nj))j∈N defined in the proof of Propo-
sition 1,
limj→∞K(x(nj)) = Kx#.

Proof: Specializing the inequality (5.25) to w = x#, we obtain

lim sup
j→∞

[
‖Kx(nj)‖2 − ‖Kx#‖2

]
≤ 0;

together with ‖Kx#‖2 ≤ lim infj→∞ ‖Kx(nj)‖2 (a consequence of the weak
convergence ofKx(nj) toKx#), this implies limj→∞ ‖K(x(nj))‖2 = ‖Kx#‖2,
and thus limj→∞K(x(nj)) = Kx#. 2

Lemma 12. Under the same assumptions as in Proposition 1, there exists

a subsequence
(
x(n

′
ℓ)
)
ℓ∈N

of (x(n))n∈N such that

lim
ℓ→∞

‖x(n′
ℓ) − x#‖ = 0, (5.27)

Proof: Let (x(nj))j∈N be the subsequence defined in the proof of Propo-
sition 1. Define now u(j) := x(nj) − x# and v(j) := x(nj+1) − x#. Since, by
Lemma 10, ‖x(n+1)−x(n)‖−−−→n→∞ 0, we have ‖u(j)−v(j)‖−−−→

j→∞ 0. On the other

hand,

u(j) − v(j) = u(j) + x# − PR

(
u(j) + x# + β(nj)K∗(y −K(u(j) + x#))

)

= u(j) + PR

(
x# + β(nj)K∗(y −Kx#)

)

−PR

(
x# + β(nj)K∗(y −Kx#) + u(j) − β(nj)K∗Ku(j)

)
,

where we have used Proposition 1 (x# is a minimizer) and Lemma 4 (so
that
x# = PR

(
x# + β(nj)K∗(y −Kx#)

)
). By Lemma 11, limj→∞ ‖Ku(j)‖ = 0.

Since the β(nj) are uniformly bounded, we have, by formula (4.3),
∥∥∥PR

(
x# + β(nj)K∗(y −Kx#) + u(j) − β(nj)K∗Ku(j)

)

PR

(
x# + β(nj)K∗(y −Kx#) + u(j)

)∥∥∥
≤ β(nj)‖K∗Ku(j)‖−−−→

j→∞0.
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Combining this with ‖u(j) − v(j)‖−−−→
j→∞ 0, we obtain

lim
j→∞

∥∥∥PR

(
x# + β(nj)K∗(y −Kx#) + u(j)

)

−PR

(
x# + β(nj)K∗(y −Kx#)

)
− u(j)

∥∥∥ = 0. (5.28)

Since the β(nj) are uniformly bounded, they must have at least one accu-
mulation point. Let β(∞) be such an accumulation point, and choose a
subsequence (jℓ)ℓ∈N such that limℓ→∞ β(njℓ

) = β(∞). To simplify notation,
we write n′ℓ := njℓ, u

′(ℓ) := u(jℓ), v′(ℓ) := v(jℓ). We have thus

limℓ→∞ β(n
′
ℓ) = β(∞) , and

limℓ→∞
∥∥∥PR

(
x# + β(n

′
ℓ)K∗(y −Kx#) + u′(ℓ)

)

− PR

(
x# + β(n

′
ℓ)K∗(y −Kx#)

)
− u′(ℓ)

∥∥∥ = 0.

(5.29)

Denote h# := x#+β(∞)K∗(y−Kx#) and h′(ℓ) := x#+β(n
′
ℓ)K∗(y−Kx#).

We have now

‖PR(h
# + u′(ℓ))− PR(h

#)− u′(ℓ)‖
≤ ‖PR(h

′(ℓ) + u′(ℓ))− PR(h
′(ℓ))− u′(ℓ)‖

+‖PR(h
′(ℓ) + u′(ℓ))− PR(h

# + u′(ℓ))‖+ ‖PR(h
′(ℓ))− PR(h

#)‖
≤ ‖PR(h

′(ℓ) + u′(ℓ))− PR(h
′(ℓ))− u′(ℓ)‖+ 2‖h′(ℓ) − h#‖.

Since both terms on the right hand side converge to zero for ℓ → ∞ (see
(5.29)), we have

lim
ℓ→∞

‖PR(h
# + u′(ℓ))− PR(h

#)− u′(ℓ)‖ = 0. (5.30)

Without loss of generality we can assume ‖h#‖1 > R. By Lemma 2 there

exists µ > 0 such that PR(h
#) = Sµ(h#). Because |h#λ | → 0 as |λ| → ∞,

this implies that, for some finite K1 > 0,
(
PR(h

#)
)
λ
= 0 for |λ| > K1. Pick

now any ǫ > 0 that satisfies ǫ < µ/5. There exists a finite K2 > 0 so that∑
|λ|>K2

|h#λ |2 < ǫ2. Set K0 := max(K1,K2), and define the vector h̃# by

h̃#λ = h#λ if |λ| ≤ K0, h̃
#
λ = 0 if |λ| > K0.

By the weak convergence of the u′(ℓ), we can, for this same K0, deter-

mine L1 > 0 such that, for all ℓ ≥ L1,
∑

|λ|≤K0
|u′(ℓ)λ |2 ≤ ǫ2. Define new

vectors ũ′(ℓ) by ũ′(ℓ)λ = 0 if |λ| ≤ K0, ũ
′(ℓ)
λ = u

′(ℓ)
λ if |λ| > K0.

Because of (5.30), there exists L2 > 0 such that ‖PR(h
# + u′(ℓ)) −

PR(h
#) − u′(ℓ)‖ ≤ ǫ for ℓ ≥ L2. Consider now ℓ ≥ L := max(L1, L2). We
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have

‖PR(h̃
# + ũ′(ℓ))− PR(h̃

#)− ũ′(ℓ)‖
≤ ‖PR(h̃

# + ũ′(ℓ))− PR(h
# + ũ′(ℓ))‖+ ‖PR(h

# + ũ′(ℓ))− PR(h
# + u′(ℓ))‖

+ ‖PR(h
# + u′(ℓ))− PR(h

#)− u′(ℓ)‖+ ‖PR(h
#)− PR(h̃

#)‖+ ‖u′(ℓ) − ũ′(ℓ)‖
≤ 5ǫ .

On the other hand, Lemma 2 tells us that there exists σℓ > 0 such that
PR(h̃

# + ũ′(ℓ)) = Sσℓ
(h̃# + ũ′(ℓ)) = Sσℓ

(h̃#) + Sσℓ
(ũ′(ℓ)), where we used in

the last equality that h̃#λ = 0 for |λ| > K0 and ũ
′(ℓ)
λ = 0 for |λ| ≤ K0. From

‖Sµ(h̃#)‖1 = R = ‖Sσℓ
(h̃#)‖1+‖Sσℓ

(ũ′(ℓ))‖1 we conclude that σℓ ≥ µ for all
ℓ ≥ L. We then deduce

(5ǫ)2 ≥ ‖PR(h̃
# + ũ′(ℓ))− PR(h̃

#)− ũ′(ℓ)‖2

=
∑

|λ|≤K0

|Sσℓ
(h̃#λ )− Sµ(h̃

#
λ )|2 +

∑

|λ|>K0

|Sσℓ
(ũ

′(ℓ)
λ )− ũ

′(ℓ)
λ |2

≥
∑

|λ|>K0

[
max

(
|ũ′(ℓ)λ | − σℓ, 0

)
− |ũ′(ℓ)λ |

]2

=
∑

|λ|>K0

min
(
|ũ′(ℓ)λ |, σℓ

)2
≥

∑

|λ|>K0

min
(
|ũ′(ℓ)λ |, µ

)2
.

Because we picked ǫ < µ/5, this is possible only if |ũ′(ℓ)λ | ≤ µ for all |λ| > K0,
ℓ ≥ L, and if, in addition,


 ∑

|λ|>K0

|ũ′(ℓ)λ |2


1/2

≤ 5ǫ , i.e., ‖ũ′(ℓ)‖ ≤ 5ǫ . (5.31)

It then follows that ‖u′(ℓ)‖ ≤ ‖ũ′(ℓ)‖+
[∑

|λ|≤K0
|u′(ℓ)λ |2

]1/2
≤ 6ǫ.

We have thus obtained what we set out to prove: the subsequence (xnjℓ )ℓ∈N
of (x(n))n∈N satisfies that, given arbitrary ǫ > 0, there exists L so that, for
ℓ > L, ‖xnjℓ − x#‖ ≤ 6ǫ. 2

Remark 3. In this proof we have implicitly assumed that ‖h# + u(j)‖1 >
R. Given that ‖h#‖1 > R, this assumption can be made without loss of
generality, because it is not possible to have ‖h#‖1 > R and ‖h#+u(j)‖1 < R
infinitely often, as the following argument shows. Find K0, L0 such that∑

|λ|<K0
|h#λ | ≥ (‖h#‖1 + R)/2 and, ∀ℓ ≥ L0 and ∀|λ| < K0: |u′(ℓ)λ | <

(K−1
0 (‖h#‖1 − R)/4. Then

∑
|λ|<K0

|h#λ + u
′(ℓ)
λ | ≥ ∑

|λ|<K0
|h#λ | − |u′(ℓ)λ | ≥

(‖h#‖1+R)/2− (‖h#‖1−R)/4 = R+(‖h#‖1−R)/4 > R. Hence, ∀ℓ > L0,
‖h# + u′(ℓ)‖1 ≥ R.
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Remark 4. At the cost of more technicalities it is possible to show that the
whole subsequence (x(nj))j∈N defined in the proof of Proposition 1 converges
in norm to x#, i.e., that limj→∞ ‖x(nj) − x#‖ = 0, without going to a
subsequence (xnjℓ )ℓ∈N.

The following proposition summarizes in one statement all the findings of
the last two subsections.

Proposition 2 Norm convergence to minimizing accumulation points.
Every weak accumulation point x# of the sequence (x(n))n∈N defined by (3.2)
is a minimizer of D in BR. Moreover, there exists a subsequence (x(nℓ))ℓ∈N
of (x(n))n∈N that converges to x# in norm.

5.4 Uniqueness of the accumulation point

In this subsection we prove that the accumulation point x# of (x(n))n∈N
is unique, so that the entire sequence (x(n))n∈N converges to x# in norm.

(Note that two sequences (x(n))n∈N and (x′(n))n∈N, both defined by the

same recursion, but starting from different initial points x(0) 6= x′(0), can
still converge to different limits x# and x′#.)

We start again from the inequality

〈x(n) + β(n)K∗(y −Kx(n))− x(n+1), w − x(n+1)〉 ≤ 0, (5.32)

for all w ∈ BR and for all n ∈ N, and its many consequences. Define MR to
be the set of minimizers of D on BR. By Lemma 5, MR = BR∩ (x̃+kerK),
where x̃ is an arbitrary minimizer of D in BR. By the convention adopted
in Remark 1,

MR ⊂ B+
R :=

{
x ∈ ℓ1(Λ);xλ ≥ 0 for all λ ∈ Λ, and

∑

λ∈Λ
xλ ≤ R

}
. (5.33)

Moreover, for each element z ∈ MR, zλ = 0 if λ /∈ Γ (see Lemma 8). The
set MR is both closed and convex. We define the corresponding (nonlinear)
projection operator PMR

as usual,

PMR
(v) := arg min{‖v − z‖2 ; z ∈MR } . (5.34)

Because MR is convex, this projection operator has the following property:

∀x̃ ∈MR : 〈z − PMR
(z), x̃− PMR

(z)〉 ≤ 0. (5.35)

(The proof is standard, and is essentially given in the proof Lemma 3, where
in fact only the convexity of BR was used.) For each n ∈ N, we introduce
now a(n) and b(n) defined by

a(n) := PMR
(x(n)), b(n) = x(n) − a(n). (5.36)



22 Ingrid Daubechies, Massimo Fornasier, and Ignace Loris

Specializing equation (5.35) to x(n), we obtain, for all x̃ ∈ MR and for all
n ∈ N:

〈x(n) − a(n), x̃− a(n)〉 ≤ 0. (5.37)

or
〈b(n), x̃− a(n)〉 ≤ 0. (5.38)

Because a(n) is a minimizer, we can also apply Lemma 4 to a(n) and conclude

〈K∗(y −Ka(n)), w − a(n)〉 ≤ 0, for all w ∈ BR. (5.39)

With these inequalities, we can prove the following crucial result.

Lemma 13. For any x̃ ∈MR, and for any n ∈ N,

‖x(n+1) − x̃‖ ≤ ‖x(n) − x̃‖. (5.40)

Proof: We set w = x̃ in (5.32), leading to

〈x(n) − x(n+1), x̃− x(n+1)〉+ β(n)〈K∗(y −Kx(n)),−b(n+1)〉 ≤ 0, (5.41)

where we have used that Kx̃ = Ka(n+1). We also have, setting w = x(n+1)

in the (n+ 1)-version of (5.39),

〈K∗(y −Ka(n+1)), x(n+1) − a(n+1)〉 ≤ 0, (5.42)

or
〈K∗(y −Ka(n)), b(n+1)〉 ≤ 0, (5.43)

where we have used Ka(n) = Ka(n+1). It follows that

〈x(n) − x(n+1), x̃− x(n+1)〉+ β(n)〈−K∗Kb(n),−b(n+1)〉 ≤ 0, (5.44)

or
〈x(n) − x(n+1), x̃− x(n+1)〉+ β(n)〈Kb(n),Kb(n+1)〉 ≤ 0, (5.45)

which is also equivalent to

〈x(n) − x̃, x̃− x(n+1)〉+ ‖x̃− x(n+1)‖2 + 1

2
β(n)

[
‖Kb(n)‖2 + ‖Kb(n+1)‖2

]

−1

2
β(n)‖Kb(n) −Kb(n+1)‖2 ≤ 0. (5.46)

Adding 1
2β

(n)‖K(b(n) − b(n+1))‖2 ≤ r
2‖x(n) − x(n+1)‖2 to (5.46), we have

〈x(n) − x̃, x̃− x(n+1)〉+ ‖x̃− x(n+1)‖2 + 1

2
β(n)

[
‖Kb(n)‖2 + ‖Kb(n+1)‖2

]

≤ r

2
‖x(n) − x(n+1)‖2

=
r

2

[
‖x(n) − x̃‖2 + ‖x(n+1) − x̃‖2 − 2〈x(n) − x̃, x(n+1) − x̃〉

]
.
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It follows that
(
1− r

2

)
‖x(n+1) − x̃‖2 + (1− r)〈x̃− x(n), x(n+1) − x̃〉 − r

2
‖x̃− x(n)‖2

≤ −1

2
β(n)

[
‖Kb(n)‖2 + ‖Kb(n+1)‖2

]
≤ 0, (5.47)

which, in turn, implies that

(
1− r

2

)
‖x(n+1) − x̃‖2 − (1− r)‖x̃− x(n)‖‖x(n+1) − x̃‖ − r

2
‖x̃− x(n)‖2 ≤ 0.

(5.48)
This can be rewritten as
[
‖x̃− x(n+1)‖ − ‖x̃− x(n)‖

] [(
1− r

2

)
‖x(n+1) − x̃‖+ r

2
‖x̃− x(n)‖

]
≤ 0,

(5.49)
which implies ‖x(n+1) − x̃‖ ≤ ‖x(n) − x̃‖. 2

We are now ready to state the main result of our work.

Theorem 1. The sequence
(
x(n)

)
n∈N as defined in (3.2), where the step-

length sequence
(
β(n)

)
n∈N satisfies Condition (B) with respect to the x(n),

converges in norm to a minimizer of D on BR.

Proof: The sequence (x(n))n∈N has a least one accumulation point x#.
By Proposition 1 x# minimizes D in BR. By Proposition 2 (x(n))n∈N has
a subsequence

(
x(nℓ)

)
ℓ∈N that converges to x#. By Lemma 13 ‖x(n) − x#‖

decreases monotonically, hence it has a limit for n→ ∞, and

lim
n→∞

‖x(n) − x#‖ = lim
ℓ→∞

‖x(nℓ) − x#‖ = 0. (5.50)

2

6. Numerical Experiments and Additional
Algorithms

6.1 Numerical examples

We conduct a number of numerical experiments to gauge the effectiveness
of the different algorithms we discussed. All computations were done in
Mathematica 5.2 [45] on a 2Ghz workstation with 2Gb memory.

We are primarily interested in the behavior, as a function of time (not
number of iterations), of the relative error ‖x(n) − x̄‖/‖x̄‖. To this end, and
for a given operator K and data y, we need to know in advance the actual
minimizer x̄(τ) of the functional (2.3).

One can calculate the minimizer exactly (in practice up to computer
round-off) with a finite number of steps using the LARS algorithm described
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in [29] (the variant called ‘Lasso’, implemented independently by us). This
algorithm scales badly, and is useful in practice only when the number of
non-zero entries in the minimizer x̄(τ) is sufficiently small. We made our
own implementation of this algorithm to make it more directly applicable to
our problem (i.e., we do not renormalize the columns of the matrix to have
zero mean and unit variance, as it is done in the statistics context [29]). We
also double-check the minimizer obtained in this manner by verifying that
it is indeed a fixed point of the iterative thresholding algorithm (2.5) (up
to machine epsilon). We then have an ‘exact’ minimizer x̄ together with
its radius R = ‖x̄‖1 (used in the projected algorithms) and, according to
Lemma 6, the corresponding threshold τ = maxi |r̄i| with r̄ = K∗(y −Kx̄)
(used in the iterative thresholding algorithm).

The numerical examples below are listed in order of increasing complex-
ity; they illustrate that the algorithms can behave differently for different

examples. In these experiments we choose β(n) = β
(n)
st. := ‖r(n)‖2/‖Kr(n)‖2,

(where, as before, r(n) = K∗(y −Kx(n))); β
(n)
st. is the standard descent pa-

rameter from the classical linear steepest descent algorithm.

1. When K is a partial Fourier matrix (i.e., a Fourier matrix with a
prescribed number of deleted rows), there is no advantage in using a

dynamical step size β
(n)
st. = ‖r(n)‖2/‖Kr(n)‖2 as this ratio is always

equal to 1. This trivially fulfills Condition (B) in Section 5.1. The
performance of the projected steepest descent iteration simply equals
that of the projected Landweber iterations.

2. By combining a scaled partial Fourier transform with a rank 1 pro-
jection operator, we constructed our second example, in which K is
a 1536×2049 matrix, of rank 1536, with largest singular value equal
to 0.99 and all the other singular values between 0.01 and 0.11. Be-
cause of the construction of the matrix, the FFT algorithm provides
a fast way of computing the action of this matrix on a vector. For
the y and τ that were chosen, the limit vector x̄τ has 429 nonzero
entries. For this example, the LARS procedure is slower than thresh-
olded Landweber, which in turn is significantly slower than projected
steepest descent. To get within a distance of the true minimizer cor-
responding to a 5% relative error, the projected steepest descent
algorithm takes 2 sec, the thresholded Landweber algorithm 39 sec,
and LARS 151 sec. (The relatively poor performance of LARS in
this case is due to the large number of nonzero entries in the limit
vector x̄τ ; the complexity of LARS is cubic in this number of nonzero

entries.) In this case, the β
(n)
st. = ‖r(n)‖2/‖Kr(n)‖2 are much larger

than 1; moreover, they satisfy Condition (B) of Section 5.1 at every
step. We illustrate the results in Figure 2.
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50s 100s 150s
0

1 ‖xn − x̄‖/‖x̄‖

FIGURE 3 The different convergence rates of the thresholded Landweber algorithm (dot-
ted line), the projected steepest descent algorithm (solid line, near vertical axis) and the
LARS algorithm (dashed line), for the second example. The projected steepest descent
algorithm converges much faster than the thresholded Landweber iteration. They both
do better than the LARS method.

3. The last example is inspired by a real-life application in geoscience
[37], in particular an application in seismic tomography based on
earthquake data. The object space consists of the wavelet coeffi-
cients of a 2D seismic velocity perturbation. There are 8192 degrees
of freedom. In this particular case the number of data is 1848. Hence
the matrix K has 1848 rows and 8192 columns. We apply the differ-
ent methods to the same noisy data that are used in [37] and measure
the time to convergence up to a specified relative error (see Table
1.1 and Figure 3). This example illustrates the slow convergence of
the thresholded Landweber algorithm (2.5), and the improvements
made by a projected steepest descent iteration (3.2) with the special

choice β(n) = β
(n)
st. above. In this case, this choice turns out not to

satisfy Condition (B) in general. One could conceivably use succes-
sive corrections, e.g. by a line-search, to determine, starting from

β
(n)
st. , values of β

(n) that would satisfy condition (B), and thus guar-
antee convergence as established by Theorem 5.18. This would slow

down the method considerably. The β
(n)
st. seem to be in the right

ballpark, and provide us with a numerically converging sequence.
We also implemented the projected Landweber algorithm (3.1); it is
listed in Table 1.1 and illustrated in Figure 3.
The matrixK in this example is extremely ill-conditioned: its largest
singular value was normalized to 1, but the remaining singular values
quickly tend to zero. The threshold was chosen, according to the
(known or estimated) noise level in the data, so that D(x̄)/σ2 = 1848
( = the number of data points), where σ is the data noise level; this
is a standard choice that avoids overfitting.
In Figure 3, we see that the thresholded Landweber algorithm takes
more than 21 hours (corresponding to 200, 000 iterations) to converge
to the true minimizer within a 3% relative error, as measured by
the usual ℓ2 distance. The projected steepest descent algorithm is
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5h 10h 15h 20h
0

1 ‖xn − x̄‖/‖x̄‖

FIGURE 4 The different convergence rates of the thresholded Landweber algorithm (solid
line), the projected Landweber algorithm (dashed line) and the projected steepest descent
algorithm (dotted line), for the third example. The projected steepest descent algorithm
converges about four times faster than the thresholded Landweber iteration. The projected
Landweber iteration does better at first (not visible in this plot), but looses with respect
to iterative thresholding afterwards. The horizontal axis has time (in hours), the vertical
axis displays the relative error.

about four times faster and reaches the same reconstruction error in
about 5.5 hours (25, 000 iterations). Due to one additional matrix-
vector multiplication and, to a minor extent, the computation of
the projection onto an ℓ1-ball, one step in the projected steepest
descent algorithm takes approximately twice as long as one step in
the thresholded Landweber algorithm. For the projected Landweber
algorithm there is an advantage in the first few iterations, but after a
short while, the additional time needed to compute the projection PR

(i.e., to compute the corresponding variable thresholds) makes this
algorithm slower than the iterative soft-thresholding. We illustrate
the corresponding CPU time in Table 1.1.
It is worthwhile noticing that for the three algorithms the value of
the functional (2.3) converges much faster to its limit value than the
minimizer itself: When the reconstruction error is 10%, the corre-
sponding value of the functional is already accurate up to three digits
with respect to the value of the functional at x̄. We can imagine that
in this case the functional has a long narrow “valley” with a very
gentle slope in the direction of the eigenvectors with small (or zero)
singular values. The path in the ‖x‖1 vs. ‖Kx− y‖2 plane followed
by the iterates is shown in Figure 2. The projected steepest descent
algorithm, by construction, stays within a fixed ℓ1-ball, and, as al-
ready mentioned, converges faster than the thresholded Landweber
algorithm. The path followed by the LARS algorithm is also pic-
tured. It corresponds with the so-called trade-off curve which can be
interpreted as the border of the area that is reachable by any element
of the model space, i.e., it is generated by x̄(τ) for decreasing values
of τ > 0.
In this particular example, the number of nonzero components of
x̄ equals 128. The LARS (exact) algorithm only takes 55 seconds,
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Relative thresholded Landweber projected st. descent projected Landweber
error n time n time n time

0.90 3 1s 2 1s 3 2s
0.80 20 8s 8 7s 15 11s
0.70 163 1m8s 20 17s 59 44s
0.50 3216 22m9s 340 4m56s 2124 27m17s
0.20 55473 6h23m 6738 1h37m
0.10 100620 11h38m 11830 2h51m
0.03 198357 21h47m 22037 5h20m

TABLE 1.1

Table illustrating the relative performance of three algorithms: thresholded
Landweber, projected Landweber and projected steepest descent, for the

third example.

which is much faster than any of the iterative methods demonstrated
here. However, as illustrated above, by the second example, LARS
looses its advantage when dealing with larger problems where the
minimizer is not sparse in absolute number of entries, as is the case
in, e.g., realistic problems of global seismic tomography. Indeed,
the example presented here is a “toy model” for proof-of-concept for
geoscience applications. The 3D model will involve millions of un-
knowns and solutions that may be sparse compared with the total
number of unknowns, but not sparse in absolute numbers. Because
the complexity of LARS is cubic in the number of nonzero compo-
nents of the solution, such 3D problems are expected to lie beyond
its useful range.

6.2 Relationship to other methods

The projected iterations (5.2) and (5.3) are related to the POCS (Projection
on Convex Sets) technique [3]. The projection of a vector a on the solution
space {x : Kx = y} (a convex set, assumed here to be non-empty; no
such assumption was made before because the functional (2.3) always has a
minimum) is given by:

x = a−K∗(KK∗)−1(y −Ka) (6.1)

Hence, alternating projections on the convex sets {x : Kx = y} and BR

give rise to the algorithm [5]: : Pick an arbitrary x(0) ∈ ℓ2(Λ), for example
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x(0) = 0, and iterate

x(n+1) = PR(x
(n) −K∗(KK∗)−1(y −Kx(n))) (6.2)

This may be practical in case of a small number of data or when there
is structure in K, i.e., when KK∗ is efficiently inverted. Approximating
KK∗ by the unit matrix, yields the projected Landweber algorithm (5.2);
approximating (KK∗)−1 by a constant multiple of the unit matrix yields the
projected gradient iteration (5.3) if one chooses the constant equal to β(n).
The projected methods discussed in this paper produce iterates that (except

10 20

‖Kx − y‖2

‖x‖1

FIGURE 5 Trade-off curve (solid line) and its approximation with algorithm (6.3) in 200
steps (dashed line). For comparison, the iterates of projected steepest descent are also
indicated (triangles).

for the first few) live on the ‘skin’ of the ℓ1-ball of radius R, as shown in Fig.
2. We have found even more promising results for an ‘interior’ algorithm in
which we still project on ℓ1-balls, but now with a slowly increasing radius,
i.e.,

x(n+1) = PR(n)

(
x(n) + β(n)r(n)

)
, R(n) = (n+ 1)R/N, and n = 0, . . . ,N,

(6.3)
where N is the prescribed maximum number of iterations (the origin is
chosen as the starting point of this iteration). We do not have a proof
of convergence of this ‘interior point type’ algorithm. We observed (also
without proof) that the path traced by the iterates x(n) (in the ‖x‖1 vs.
‖Kx − y‖2 plane) is very close to the trade-off curve (see Fig. 5); this is a
useful property in practice since at least part of the trade-off curve should
be constructed anyway.
Note that the strategy followed by these algorithms is similar to that of
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LARS [29], in that they both start with x(0) = 0 and slowly increase the ℓ1
norm of the successive approximations.
While we were finishing this paper, Michael Friedlander informed us of their
numerical results in [44] which are closely related to our approach, although
their analysis is limited to finite dimensions.
Different, but closely related is also the recent approach by Figueiredo,
Nowak, and Wright [32]. The authors first reformulate the minimization
of (2.3) as a bound-constrained quadratic program in standard form, and
then they apply iterative projected gradient iterations, where the projection
act componentwise by clipping to zero negative components.

7. Conclusions

We have presented convergence results for accelerated projected gradient
methods to find a minimizer of an ℓ1 penalized functional. The innovation
due to the introduction of ‘Condition (B)’ is to guarantee strong convergence
for the full sequence. Numerical examples confirm that this algorithm can
outperform (in terms of CPU time) existing methods such as the thresholded
Landweber iteration or even LARS.

It is important to remark that the speed of convergence may depend
strongly on how the operator is available. Because most of the time in the
iterations is consumed by matrix-vector multiplications (as is often the case
for iterative algorithms), it makes a big difference whether K is given by a
full matrix or a sparse matrix (perhaps sparse in the sense that its action
on a vector can be computed via a fast algorithm, such as the FFT or a
wavelet transform). The applicability of the projected algorithms hinges on
the observation that the ℓ2 projection on an ℓ1 ball can be computed with
a O(m logm)-algorithm, where m is the dimension of the underlying space.

There is no universal method that performs best for any choice of the
operator, data, and penalization parameter. As a general rule of thumb we
expect that, among the algorithms discussed in this paper for which we have
convergence proofs,

• the thresholded Landweber algorithm (2.5) works best for an oper-
ator K close to the identity (independently of the sparsity of the
limit),

• the projected steepest descent algorithm (3.2) works best for an op-
erator with a relatively nice spectrum, i.e., with not too many zeroes
(also independently of the sparsity of the minimizer), and

• the exact (LARS) method works best when the minimizer is sparse
in absolute terms.

Obviously, the three cases overlap partially, and they do not cover the whole
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range of possible operators and data. In future work we intend to investigate
algorithms that would further improve the performance for the case of a large
ill-conditioned matrix and a minimizer that is relatively sparse with respect
to the dimension of the underlying space. We intend, in particular, to focus
on proving convergence and other mathematical properties of (6.3).
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