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Abstract

This paper shows that information imperfections and common values can solve coordi-

nation problems in multicandidate elections. We analyze an election in which (i) the

majority is divided between two alternatives and (ii) the minority backs a third alterna-

tive, which the majority views as strictly inferior. Standard analyses assume voters have

a �xed preference ordering over candidates. Coordination problems cannot be overcome

in such a case, and it is possible that inferior candidates win. In our setup the majority

is also divided as a result of information imperfections. The majority thus faces two

problems: aggregating information and coordinating to defeat the minority candidate.

We show that when the common value component is strong enough, approval voting

produces full information and coordination equivalence: the equilibrium is unique and

solves both problems. Thus, the need for information aggregation helps resolve the ma-

jority�s coordination problem under approval voting. This is not the case under standard

electoral systems.
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1 Introduction

Coordination problems can undo even the best electoral systems. Consider the classical case

in which the majority is divided between two alternatives, whereas the minority is uni�ed

behind a single one.1 Such a majority faces at least three important problems. First, failing

to coordinate ballots on a single alternative can lead to the victory of the minority. Just to

mention one example, think of the US presidential election of 2000, in which A. Gore lost

to G.W. Bush by 537 votes in Florida (a state which proved pivotal). In that election, R.

Nader got 1.63% of the Floridians�votes (2.74% at the national level). Thus despite being

a majority, left-wing voters lost because they had failed to coordinate their ballots on a

single candidate. A second problem is that, to avoid such splits, some candidates may be

compelled to withdraw. The best alternative may thus not even be in th running. Third,

since the majority can coordinate on any of the running alternatives (there are multiple

equilibria) the majority may fail to select the best among the ones running. No electoral

system has been found to be immune to this coordination problem so far.2

In this paper, we take a step back and reconsider the nature of divisions in the electorate:

majority voters are divided both by their individual preferences and by their information.

The presence of information imperfections implies that, on top of overcoming coordination

problems, majority voters must also aggregate information to identify which alternative is

the full information Condorcet winner. We focus on the cases in which a common element

of information a¤ects voter valuations in a common direction.3 The voters� valuation of

alternatives thus includes both a common value component and a private value component.

The literature on electoral systems has typically overlooked the information aggregation

problem posed by the common value component4 as it has instead focused on opposing

preferences, i.e. the private value component.

Our main �nding is that approval voting5 resolves both problems at once, producing

1This so-called problem of the divided majority has been central to the analysis of electoral systems since

at least the 18th Century (Borda 1781).
2The literature on electoral systems and coordination problems is vast. See e.g. Arrow (1951), Cox

(1997), Dewan and Myatt (2007), Myatt (2007), Myerson (2002), and Myerson and Weber (1993).
3We are thinking for instance of a politician�s moral qualities or of policies with ex ante uncertain

costs and bene�ts. This is typical of social and tax policy, and of policy choices such as �nancial sector

(de)regulation or of the �war on terror�: as it unfolds, information about the actual costs and bene�ts of

these policies can substantially a¤ect electoral support. See also Osborne and Turner (2010, Section 5.2).
4 Information aggregation in two-candidate elections is studied by the Condorcet Jury Theorem literature

(see e.g. Austen-Smith and Banks 1996, Feddersen and Pesendorfer 1996, 1997, Myerson 1998a). For

multicandidate elections, see e.g. Castanheira (2003) and Piketty (2000).
5Under approval voting, voters can �approve of�as many candidates as they want, each approval counts
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full information and coordination equivalence. A necessary and su¢ cient condition for this

result is that su¢ ciently many voters may need additional information to identify their

best alternative (i.e. they have a �doubt� that information can dispel). This implies,

quite surprisingly, that the presence of an information aggregation problem facilitates the

resolution of the coordination problem. In contrast, a large class of electoral systems,

including plurality and runo¤, remain prone to coordination failures.

Conveying the intuition for this result is simpler when the private value component is

assumed away (see sections 2 and 3). Divisions are then only due to information: consider

three candidates (A; B and C), two states of nature (a and b) and three types of voters (tA;

tB and tC), whose actual number is random. Types tC are the (expected) minority block;

they always vote for C: Types tA and tB form the (expected) majority block: they prefer A

to B to C in state a, and B to A to C in state b. Yet, they are divided because they hold

opposite information about which state, a or b, is the true state of nature.

The distinctive characteristic of approval voting is to allow voters to kill two birds with

one ballot: they can vote for their most preferred alternative and lend support to their

second choice. For instance, A-supporters would vote for both A and B if A has little

chance of defeating C. This is the coordination motive for double voting. We also identify

a common-value motive for double voting: neither types tA nor tB want A to win in state

b nor B to win in state a. Thus, all majority voters would (also) vote B if they deem

that A has too high a chance of winning in state b. Finally, the information motive implies

that majority voters avoid double voting �excessively�: they value giving exclusive support

to their preferred alternative in order to aggregate information. Our results show that

the equilibrium strategy is unique and balances these three motives: some majority voters

double vote to ensure that C�s expected vote share is the lowest one, and others single-

vote to ensure that the full information Condorcet winner has the largest share. Thus, full

information and coordination equivalence always hold under approval voting.

In contrast, such a desirable property fails to hold with the two most used electoral

systems around the world, plurality and runo¤, as well as with a broad class of scoring

rules. The reason is that the coordination motive tends to swamp the other motives. Voters

are then trapped into coordinating on either A or B. Deviating is too costly because one

would primarily reduce the vote count of the leading alternative when lending support to

the trailing one: one cannot vote both for A and for B as in approval voting. This prevents

information aggregation and the election of the full information Condorcet winner in these

systems.

as one vote and the candidate that obtains the largest number of votes wins (Weber 1977, 1995, Brams and

Fishburn 1978, 1983, Laslier 2009).
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2 A common value model

This section lays out a simpli�ed model in which voters have purely common valued prefer-

ences. Divisions are thus only due to information. This simpli�ed case is su¢ cient to convey

the main intuitions. It also clari�es the comparison of electoral systems in a setup polar to

the classical one, in which divisions are only rationalized by the private value component.

The general case in which voters are divided by both the private and the common value

components is introduced in Section 4.

We consider three alternatives, P 2 fA;B;Cg, two states of nature, ! 2 fa; bg, and
three types of voters, t 2 T � ftA; tB; tCg. Types tA and tB have purely common valued
preferences: conditional on the state of nature, they all want to elect the same alternative,

which is A in state a and B in state b:

U (P; tAj!) = U (P; tBj!) = 1 if (P; !) = (A; a) or (B; b)

= 0 if (P; !) = (A; b) or (B; a) (1)

= �1 if P = C;

where U (P; tj!) denotes the utility of a voter with type t when alternative P is elected and
the true state is !. The values 1, 0 and �1 are only meant to simplify exposition.

Given their private signal (see below), types tA and tB have opposite convictions regard-

ing which state is most likely, and therefore which alternative is best. A voter with type t

believes that the true state is ! with a probability q (!jt). We impose that:

1 >
q (ajtA)
q (bjtA)

> 1 >
q (ajtB)
q (bjtB)

> 0: (2)

Importantly, (2) ; implies that the voters�information is imperfect: types tA do not put a

probability 1 on the true state being a (otherwise the probability ratio would be in�nite),

and types tB do not put a probability 1 on the true state being b (otherwise the probability

ratio would be zero). Yet, these priors may be arbitrarily close to 1. The relevant di¤erence

between priors being close or equal to 1 is that the voters� beliefs can change through

Bayesian updating if other voters reveal some of their information.

For the sake of simplicity, we assume that types tC are partisans: they always vote for

alternative C.6

6This strategy can be supported by tC -voters having dichotomous preferences. Alternatively, one may

assume that tC -voters also have a common value component and preferences C � A � B in state a and

C � B � A in state b. Yet, in this case, some of these voters could lend support to types tA and tB by

voting for A or B in equilibrium. This may only reduce tensions between types tC and types tA and tB , and

therefore the problems posed by C.
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Timing. At the beginning of the game (time 0), nature chooses the state ! with probability

q (!) : The state remains unobserved until after the election. The probabilities of states a

and b are common knowledge.

At time 1, nature selects a random number of voters from a Poisson distribution of

mean n and, conditional on the state, assigns them a type t by iid draws. The conditional

probability of being assigned type t is r (tj!), with
P

t r (tj!) = 1; 8!. These probabilities
are also common knowledge.

The distribution of voters determines which type is expected to be in the majority. We

focus on the case:

r (tC j!) < 1=2; (3)

which implies that, in expected terms, types tC are a strict minority.7 Hence, types tA and

tB compose the majority block, whereas types tC form the minority block. We assume for

simplicity that r (tC ja) = r (tC jb) :

The election is held at time 2. Neither the actual state of nature nor the actual number

of voters of each type is observed: voters only know their own type, t.8 Through Bayesian

updating, a voter with type t infers that the probability of state ! is q (!jt):

q (!jt) = q(!) r (tj!)
q(a) r (tja) + q(b) r (tjb) ; (4)

and, clearly, condition (2) imposes that:

r (tAja) > r (tAjb) ; and

r (tBja) < r (tBjb) :

Payo¤s are realized at time 3: the winning alternative W 2 fA;B;Cg is selected and
each voter receives utility U (W; t; !).

Action set under approval voting. Under approval voting, each voter can cast a ballot

on as many (or as few) alternatives as she wishes. Each approval counts as one vote: when

a voter only approves of A, then only alternative A is credited with one vote. If the voter

approves of both A and B, then both A and B are credited with one vote, and so on. Hence,

the voters�action set is:

	 = fA;B;C;AB;AC;BC;ABC;?g ;
7For r (tC j!) > 1=2; an expected majority of the electorate prefers that C wins, independently of !. This

case is trivial to investigate: by the law of large numbers, the realized fraction of types tC will be larger than

1/2 with a probability that converges to 1 as n!1 and C wins.
8With common initial priors q (!), a voter�s type is uniquely de�ned by the signal she receives (tA or

tB). Our results however directly extend to any other value of q (!jt) that satis�es (2).
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where, by an abuse of notation, action A denotes a ballot in favor of A only, action BC

denotes a joint approval of B and C, etc., and ? denotes abstention. Thus, the di¤erence

between approval voting and more common electoral rules is that a voter can cast a single,

a double or a triple approval.

A ballot a¤ects the winning probabilities of each alternative. The value of a ballot thus

depends on its probability of being pivotal across alternatives.9 Single approvals ( = A;

B and C) act as positive votes: for instance, an A-vote can only be pivotal in favor of A,

either against B or against C. Double approvals ( = AB, BC and AC) act as negative

votes. For instance, if the voter plays AC; her ballot can only be pivotal against B, either in

favor of A or of C. Finally, a triple approval (ABC) can never be pivotal: it is strategically

equivalent to abstention.

Let x ( ) denote the number of voters who played action  2 	 at time 2. The total

number of approvals received by alternatives A;B; and C are respectively:

X (A) = x (A) + x (AB) + x (AC) + x (ABC) ;

X (B) = x (B) + x (AB) + x (BC) + x (ABC) ; (5)

X (C) = x (C) + x (AC) + x (BC) + x (ABC) :

The alternative with the largest total number of approvals wins the election. Ties are

resolved by the toss of a fair coin.

Strategy space and equilibrium concept. A type t�s strategy is a mapping � : T !
[0; 1]8 where �t ( ) denotes the probability that a randomly sampled voter of type t plays

action  , and the usual constraint applies:
P

 �t ( ) = 1; 8t. Note that a voter can only
condition her strategy on her type t.10 Given �, an expected share of voters:

� ( j!; �) =
X

t
r (tj!) �t ( ) (6)

is expected to play action  in state !. The expected number of ballots  is:

E [x ( ) j!; �] = � ( j!; �) � n:

The realized number of ballots, x ( ) follows a Poisson distribution of mean � ( j!; �) � n,
which thus depends on the strategy, �; and on the state of nature. Let an action pro�le

x 2 N8 be the vector that lists, for each action  ; the realized number of ballots  : The set
of possible action pro�les for the players is denoted Z (	).

9Appendix A1 summarizes the properties of Poisson games, which we apply to approval voting.
10Note that the equilibrium mapping �t ( ) must be identical for all voters of a same type t; by the very

nature of population uncertainty (see Myerson 1998b, p377, for more detail). Section 4 extends the model

to a continuum of types, in which case the equilibrium is in cuto¤ strategies.
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For this voting game, we analyze the limiting properties of symmetric Bayesian Nash

equilibria when the expected population size n becomes in�nitely large. As shown by My-

erson (2000, Theorem 0), there must be at least one equilibrium in this game. In such an

equilibrium, each voter plays an undominated strategy given the expected vote share of each

alternative, and the expected vote share � in turn results from this strategy.

As shown in Lemma 2 (in Appendix A2), the set of undominated actions is actually

fA;B;ABg. We will thus omit actions AC; BC, and ABC from now on.

3 Common value: approval voting vs. other voting systems

This section lays out our main two results in the pure common value setup of Section

2: under approval voting, the equilibrium is unique and such that the full information

Condorcet winner is the only likely winner of the election. Under other systems, such as

plurality voting or runo¤ (two-round) elections, voters may instead be trapped in equilibria

in which a poor candidate is the only likely winner.

Given the information available, the best outcome would be obtained if, before the elec-

tion, voters could freely aggregate all the elements of information available in the electorate,

update their beliefs about the actual state of nature, and coordinate their votes on the best

alternative (i.e. the full information Condorcet winner). In reality, which is the best alter-

native is unclear at the time of election, and coordination problems may arise. We introduce

the concept of full information and coordination equivalence11 to identify when an election

produces (almost surely when population size is large) the best outcome:

De�nition 1 A strategy � satis�es full information and coordination equivalence if

its associated expected vote shares satisfy:

�(Aja) + �(ABja) > max f�(Bja) + �(ABja); � (C)g in state a; and
�(Bjb) + �(ABjb) > max f�(Ajb) + �(ABjb); � (C)g in state b.

(7)

That is, alternative A�s (B�s) expected vote share is the largest one in state a (b).

Satisfying full information and coordination equivalence is not a trivial matter in three-

alternative elections: �rst, C may win the election if the majority split their votes. Second,

this equivalence cannot hold if all majority-block voters approve of either A or B: if all

majority voters approve of A, for instance, then A necessarily leads the election. Third, as
11This concept is a natural extension to multicandidate elections of Feddersen and Pesendorfer�s (1997)

concept of full information equivalence.
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explained in the introduction, coordination issues arise when there are multiple equilibria:

for instance, all majority block voters may want to approve of a same alternative but cannot

agree whether to coordinate on A or on B.

3.1 Approval voting

Because of these problems, most electoral systems fail to ensure that the full information

Condorcet winner is elected. In contrast, when population size is large enough, approval

voting addresses all these issues at once:

Theorem 1 Under approval voting, there exists an expected population size �n, such that

for any n � �n; the equilibrium is unique and satis�es full information and coordination

equivalence.

A step-by-step proof can be found in Appendix A2. Here, we focus on the main intuition

for this result. It builds around the interaction among the three motives that shape voting

behaviour �the coordination, common-value, and information motives.

The coordination motive is such that, if C may either be expected to win or to be the

main challenger against A or B, majority voters develop an incentive to support the strongest

of the majority alternatives. In classical electoral systems, this implies that majority voters

must coordinate their votes only on that single alternative (we return to this point below).

Yet, a distinguishing feature of approval voting is that voters are given the option to double

vote: voters need not abandon their preferred alternative to support the strongest one. We

�nd that majority voters actually prefer to exert that option whenever coordination against

C is required: types tA mix between A and AB but never single-vote B, and types tB mix

between B and AB but never single-vote A.

The common-value motive is the second rationale for double voting: common value

implies that both types tA and tB want A to win in state a and B to win in state b. Since

majority voters have an imperfect signal, they must compare pivot probabilities across states

of nature to decide whether they should support their a priori second choice. For instance,

imagine that B�s vote share is expected to be higher than in equilibrium. The probability of

being pivotal between A and B becomes much larger in state a than in state b, in which case

even types tB dislike being pivotal against A. Majority voters have two options to restore

the balance of pivot probabilities across states: types tA may double vote less (to reduce

B�s vote share) or types tB may double vote more (to increase A�s vote share). But double

voting necessarily dominates both absention and single voting for one�s second choice.
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Finally, the information motive guarantees that majority voters do not double vote

�excessively�. Consider the case in which all majority voters double vote. Then, A and B�s

number of votes is necessarily equal and (almost surely) larger than C�s. Thus, C ceases to

be a threat. The focus is on the choice between A and B. To in�uence this choice, voters

must single vote. Pivot probabilities being equal across states of nature, voters can only

rely on their private signal to decide which alternative to vote for: types tA single-vote A

and types tB single-vote B. More generally, this motive dominates whenever C�s threat is

perceived to be small and pivot probabilities are balanced across states of nature.

The unique equilibrium under approval voting is the one that balances these three mo-

tives (Section 3.3 illustrates this interaction with the help of numerical examples): �rst,

because of the coordination motive, C must rank third in both states of nature. Second, by

the common-value motive, A�s vote share in state a cannot be smaller than that of B, and

conversely in state b. Finally, by the information motive, the vote shares of A and B cannot

be equal. That is, A must rank �rst in state a and B must rank �rst in state b. Approval

voting produces full information and coordination equivalence.

3.2 Other voting systems

At this stage, a natural question is whether the results of Theorem 1 extend to other

electoral systems: does it not immediately follow from the assumption of purely common

values? To address this question, we introduce two benchmarks that cover more than 95% of

the presidential elections held around the world over the 1990s (Golder 2005). Benchmark

1 studies plurality elections, a stylized version of the system used in the US and in the

UK, and related scoring rules. Benchmark 2 covers runo¤ elections, used in France as well

as many other countries. We �nd that these systems fail to produce full information and

coordination equivalence.

3.2.1 Benchmark 1: Plurality voting and related scoring rules

Myerson (2002) introduces f�; �g scoring rules in the following way: voters award one vote
to one alternative, zero vote to another, and a score between � and � to the third one. In

that setup, approval voting is the scoring rule such that f�; �g = f0; 1g: the voter can assign
either 0 or 1 point to her second-ranked alternative. Instead, under plurality voters must

assign one vote to one alternative only. This constrains them to award a score of zero to all

the others: f�; �g = f0; 0g.

Here, we study the class of scoring rules such that 0 = � � � < 1; i.e. the rules comprised
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between plurality and approval voting. Our second theorem shows that the coordination

motive may swamp the other two motives in all such scoring rules. That is:

Theorem 2 For any scoring rule with � < 1, there exists an �n such that, for any population

n � �n, there is an equilibrium in which full information and coordination equivalence fails.

Proof. See Appendix A2.

Let us �rst focus on plurality voting to provide an intuition for this result. In that

system, voters abstain or cast a ballot on exactly one alternative. Minority voters cast their

ballots on C, and majority voters must decide whether to vote for A or for B. Consider the

following example: q (b) = 0:03, r (tAja) = 0:6; r (tBja) = 0:01 and r (tC j�) = 0:39. That is,
alternative B is the best with a probability of 3%. In state a, 98.4% (60/61) of the majority

voters receive the signal that A is the best candidate. Only 1.6% (1/61) believe that B may

be best. In state b; r (tAjb) = 0:2 and r (tBjb) = 0:41.

Now, consider a voter who expects almost all other majority voters to coordinate on B

(for instance, B may have a history of strong voting support). What is the best response of

this voter? Since the expected vote share of A is below that of C, this voter also prefers to

cast her ballot on B: A could only win if, in a highly unlikely draw, the realized scores of

B and C were well below their expected values. There is thus an equilibrium in which all

majority voters cast their ballot on B.

This is already true for relatively small expected population sizes: with n = 100, a ballot

for A is 10�37 times less likely to be pivotal than a vote for B in this equilibrium, and the

ratio would be yet smaller with larger population sizes.12 Thus, the value of a ballot for

A is much lower than that of a ballot for B: no majority voter wants to deviate from this

strategy and the bad alternative, B, emerges as the only likely winner.

The reasoning is similar for all the other scoring rules considered in Theorem 2: if all

majority voters play BA, the number of votes for B is the realized number of majority voters:

X (B) = x(tA) + x (tB), whereas the number of votes for A is X (A) = � � (x(tA) + x (tB)).
Thus, X (B) > X (A) for any x(tA) + x (tB) > 0. A single A-ballot gives one vote to A and

zero vote to B. This vote can be pivotal if and only if: (1� �) � (x(tA) + x (tB)) � 1, which
is much less likely than being pivotal between B and C if population size is not too small:

shifting any fraction of a vote away from B primarily weakens that alternative against C.

Its impact on the probability that A wins the election is only of second order importance.

12We use Properties 1 and 2 in Appendix A1 to compute pivot probabilities and probability ratios in

numerical examples.
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This identi�es a speci�c property of approval voting that is central to Theorem 1: when

the voter can give A an additional vote without withdrawing any point from B, deviating

towards action AB becomes costless.13

3.2.2 Benchmark 2: Runo¤ elections

In runo¤ elections, a candidate wins outright in the �rst round if she satis�es two conditions:

(i) she obtains the largest number of votes, and (ii) she receives more than a pre-de�ned

threshold, here 50% of the votes.14 If no candidate passes this threshold, then a second

round opposes the top two candidates. This runo¤ system is often argued to be better than

plurality with respect to information or preference aggregation (Duverger 1954, Cox 1997,

Piketty 2000 and Martinelli 2002). Piketty (2000) for instance notes that runo¤ elections

should be able to separate the �communication stage�, in which voters learn whether A

or B is best, from the �election stage�. This intuition �nds support in Martinelli (2002).

However, as shown by Bouton (2010), uncertainty about the second-round outcome causes

runo¤ elections to produce equilibria in which a bad candidate is the only likely winner. We

illustrate this result here with the help of a second numerical example.

Assume that, in each round, the distribution of preferences follows the same Poisson

distribution as in Benchmark 1. If a given voter expects the other majority voters to

coordinate on B, then A�s expected vote share in the �rst round is 0%, and that of B is

61%. This voter�s ballot can be pivotal in favour of A if and only if both B and C receive at

most one vote: in all the other cases, A is third and gets eliminated from the race. From (9)

in the appendix, for an expected population size of n = 100, the probability of this event is

approximately 10�40.

Compare this with the probability that a ballot for B is pivotal against C. In a two-

round system, the latter pivotability combines two events: that B and C nearly tie in

the �rst round (probability: � 0:009), and that C wins the second round (probability:

� 0:0135). Altogether, a �rst-round ballot for B is thus pivotal against C with probability

13 In a setup with three potentially good alternatives and dichotomous preferences (which implies that

there is no coordination problem), Goertz and Maniquet (2011) �nd that scoring rules with � < 1 may not

even feature one equilibrium with information aggregation. With purely common valued voters, Ahn and

Oliveiros (2011) show that, if any scoring rule admits a strategy that guarantees the election of the full

information Condorcet winner, then approval voting also admits one.
14There exist other thresholds. For instance, in Costa Rica and New York City, the threshold for �rst-

round victory is below 50%. In Sri Lanka in 1996, the threshold was at 55%. Finally, there are also countries

which use a threshold that depends on the victory margin. For instance, in Nicaragua the threshold is 40%

if the margin of victory is below 5% but 35% if it is above.
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of approximately 10�4 (i.e. 0:009� 0:0135), which is 1036 times higher than the probability
of being pivotal in favour of A. Action B is thus 1036 times more valuable than action A.

Again, this ratio would increase with population size. In other words, and as formally

proven by Bouton (2010), even if small, the risk of an upset victory of C in the second round

dwarfs the incentive of majority voters to vote for A.

3.3 Numerical examples

To provide a more concrete interpretation of Theorem 1, this subsection proposes numerical

examples that focus on symmetric priors: q (a) = 1
2 = q (b) and a symmetric distribution of

types: r (tAja) = r (tBjb). Symmetry is only meant to simplify exposition: from (32) and

Lemma 8 in Appendix A2, it imposes that ��tA(A) = ��tB (B). We illustrate the e¤ect of the

three motives that shape voting behaviour. We also use these examples to illustrate that

population sizes of 10 or 100,000 voters are largely su¢ cient for our limit results to have

bite.

Let r(tC) = 0:4; r(tAja) = 0:36 and r(tAjb) = 0:24. With these parameter values

the Condorcet loser, C, would asymptotically win if the majority single voted for their

a priori preferred candidate. Vote shares would be: � (C) = 0:4 > � (Aja) = � (Bjb) =
0:36 > � (Ajb) = � (Bja) = 0:24. This implies that we are in case (ii) of Lemma 8, and

that there must be some double voting in equilibrium.15 The equilibrium strategy pro�le

is �tA (AB) = 0:57 = �tB (AB), which leads to the expected vote shares and magnitudes

illustrated in Table I.

Table I: equilibrium vote shares (left) and magnitudes (right).

Vote shares in

Candidate state a state b

A 0:497
(�rst)

0:445
(second)

B 0:445
(second)

0:497
(�rst)

C 0:4
(third)

0:4
(third)

Total 1.342 1.342

and

Magnitudes state a state b

mag(pivAC j!) �0:0052 �0:0081
mag(pivBC j!) �0:0081 �0:0052
mag(pivABj!) �0:0052 �0:0052

As this example illustrates, double voting allows the majority to �in�ate�the expected

vote shares of both A and B above the share of C. This is why the sum of the three vote
15 In a symmetric setup, r (tC) � r (tAjb) is a necessary and su¢ cient condition for all voters to single-vote

in equilibrium. For r (tC) > r (tAjb), the larger r (tC) ; the more double voting in equilibrium.
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shares exceeds 100% of the population. It also illustrates that, with an internal solution,

the magnitudes of the pivot probabilities between A and B must be equal to the largest

magnitudes against C.

Deviations. To illustrate the e¤ect of the common value motive, consider for a moment a

deviation by types tA who increase their probability of playing AB by 3 percentage points,

such that �tA (AB) = 0:6. The largest magnitude is then the one between A and B in state

a. This implies that, with 10,000 voters, the probability of being pivotal between A and B

in state a becomes 4 � 1015 higher than in state b, and 108 higher than between A and C

in state a (the �gures increase respectively to 2 � 10156 and 2 � 1080 with 100,000 voters).
In other words, the value of a single vote A becomes much larger than the value of an AB

vote, since the dominant value of a ballot is precisely to be pivotal against B. This induces

types tA to decrease their probability of playing AB, moving back towards the equilibrium

of Table I.

Next, we illustrate how the aggregate level of double voting a¤ects the relative im-

portance of the information and coordination motives. Consider a strategy function for

which majority voters do not double vote enough: �tA (AB) = 0:54 = �tB (AB) (recall that

�tA (AB) = 0:57 = �tB (AB) in equilibrium). Table II displays the magnitudes associated

with this strategy:

Table II: The coordination motive: magnitudes after deviation

Magnitudes state a state b

mag(pivAC j!) �0:0045 �0:0078
mag(pivBC j!) �0:0078 �0:0045
mag(pivABj!) �0:0056 �0:0056

Thus, with n =10,000, a ballot is 4� 104 times more likely to be pivotal against C than
between A and B (with 100,000 voters, these �gures increase to 5�1045). All majority voters
thus develop the incentive to double vote AB; and �ght C, again moving back towards the

equilibrium of Table I. Clearly, the e¤ect goes in the other direction if there is more double

voting than in equilibrium: the information motive dominates, and voters prefer to double

vote less.

4 Approval voting: common vs. private values

This section presents the main results of the paper. We introduce an extended model of

multicandidate elections in which the two sources of majority divisions coexist: majority

12



voters have opposite information and heterogeneous preferences regarding the two majority

alternatives. The former division is the same as in Sections 2 and 3. We call it the common

value component of the voters�valuation of alternatives: additional information in favor of

either A or B increases the voters�valuation of that alternative. The second division is the

one considered in the rest of the literature. We call it the private value component : even

with perfect information, majority voters may keep disagreeing about which alternative is

best.

Two results emerge: �rst, �a doubt is enough�. That is, if majority voters have even the

slightest doubt about which alternative is best, approval voting ensures the victory of the full

information Condorcet winner. Second, some majority voters may have no doubt: they are

certain about which alternative they prefer. In that case, a necessary and su¢ cient condition

for full information and coordination equivalence is that these voters do not represent too

large a fraction of the electorate. In other words, the classical �nding that no electoral system

can resolve the problem of the divided majority is due to the omission of the common value

component from the analysis of electoral systems. Whenever this component is relevant for

su¢ ciently many voters, there is at least one electoral system, approval voting, that does

resolve this problem. By contrast, the other systems studied in Section 3 fail to ensure the

election of the full information Condorcet winner (see Lemma 9 in Appendix A4).

4.1 An extended model

This extended model is related to Feddersen and Pesendorfer (1997): let us consider a voter-

speci�c utility function U (P; ij!), where U (�) is �nite, i 2 T � [�1; 1] [ ftCg summarizes
voter preferences, P 2 fA;B;Cg is the winning alternative and ! 2 
 = [0; 1] is the state
of nature. Each voter knows her preference i but is uncertain about the realized state of

nature !.

Population size is determined by the draw of a Poisson distribution of mean n.16 Given

n, each voter is attributed a preference i by iid draws. With probability r (tC) < 0:5,

the voter is part of the minority and has preferences U (C; tC j!) � U (P; tC j!) = k > 0;

8P 2 fA;Bg ; ! 2 
: With probability (1� r (tC)) ; the voter is part of the majority. Her
type i then belongs to [�1; 1] with F (i) denoting the probability that she has a preference
x � i. f (i) � F 0 (i) denotes the probability distribution function, with f (i) > 0, 8i 2 [�1; 1].

Private and common value components. Majority voters prefer both A and B to C:

U (A; ij!) � U (C; ij!) > 0 and U (B; ij!) � U (C; ij!) > 0, for any i; !. Yet, voters with

16 In the next section, we show how the results extend to multinomial distributions.
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a higher type i values A more as compared to B: for any i > i0, we have U (A; ij!) �
U (B; ij!) > U (A; i0j!)� U (B; i0j!) :

This private value component implies that the majority is divided as to whether A or B

is the best alternative for any interior state ! 2 (0; 1). The (expected) fraction of voters who
prefer A to B in state ! is de�ned by: � (Aj!) �

R 1
�1 1 [U (A; ij!)� U (B; ij!) > 0] dF (i),

where 1 [c] is an indicator function that takes value 1 when condition c holds. � (Bj!), the
fraction of voters who prefer B to A, is de�ned similarly. The majority being divided for

any interior state ! 2 (0; 1) implies:

� (Aj!) ; � (Bj!) > 0; 8! 2 (0; 1) :

The two corner states ! = 0 and ! = 1 are discussed below.

Voter preferences also feature a common value component. That is, for any majority

voter, the utility di¤erential between A and B is strictly increasing in the state of nature !:

8i 2 [0; 1] , ! > !0 ) U (A; ij!)� U (B; ij!) > U
�
A; ij!0

�
� U

�
B; ij!0

�
.

We impose that, for any � > 0 and ! 2 (0; 1) ; the fraction of voters with jU (A; ij!) �
U (B; ij!) j < � is strictly positive. Hence:

! > !0 ) � (Aj!) > �
�
Aj!0

�
and � (Bj!) < �

�
Bj!0

�
:

Thus, � (Aj!) is lowest in ! = 0 and highest in ! = 1.17

Concerning the two corners states, we impose that:

� (Aj0) = 0 and � (Aj1) = 1.

De�nition 2 We call doubt the fact that all majority voters may prefer either alternative.

This happens when the two corner states materialize with strictly positive probability. In

contrast, there are partisan voters if the probability of ! = 0 and/or ! = 1 is zero.

States of nature. The distribution of states of nature is denoted by the CDF H (!) with

H di¤erentiable. The subset [!; �!] � 
 de�nes which states have strictly positive density:
H (!) = 0, 8! < !; H (!) = 1, 8! > �!; and h (!) � H 0 (!) > 0; 8! 2 [!; �!].

Note that our pure common value setup assumed H (!) = q (b), 80 � ! < 1 and

H (1) = 1: all the probability mass was on the two corner states. At the other extreme,

17Our setup thus excludes the adversarial preferences and preference reversals studied by Kim and Fey

(2002) and Bhattacharya (2007).
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a pure private value setup would amount to setting H (!) = 0, 8! < z and H (!) = 1,

8! � z: all the probability mass is on the interior state z. The present setup allows us

to span between these two extremes: doubt requires that the two corner states materialize

with strictly positive probability, i.e. lim!&0H (!) > 0 and lim!%1H (!) < 1. Conversely,

there are partisan voters if either ! > 0 or �! < 1:

Signals. Prior to the election, each voter receives an independent and identically drawn

signal s 2 f0; 1g. Each signal is received with probability r (sj!) 2 (0; 1) ; with r (1j!) >
r (1j!0) for any ! > !0. That is, signal 1 is associated with A being better valued. Like in

the pure common value setup, the private signal is informative in the sense that some voters

are �sensitive�to the signal:

9� � T s.t.
Z
q (!j1) [U (A; ij!)� U (B; ij!)] d! > 0; andZ
q (!j0) [U (A; ij!)� U (B; ij!)] d! < 0; 8i 2 �

where q (!js) = r (sj!) h (!) =r (s) is the belief about the distribution of states conditional
on receiving signal s. Thus, after private signals are received, the higher ! is, the larger is

the expected fraction of voters who perceive that A is better than B.

Cuto¤ strategies. An equilibrium of this voting game is characterized by an ordered

cutpoint strategy such that any majority voter with i < �B (s) votes B and any voter with

i > �A (s) votes A (in a related setup, see Feddersen and Pesendorfer 1997, Proposition 1).

De�nition 3 A strategy � satis�es full information and coordination equivalence if the full

information Condorcet winner has the largest expected vote share. That is, for n!1;
(i) 8! such that � (Aj!) > � (Bj!), A wins with a probability that converges to 1 and

(ii) 8!0 such that � (Aj!0) < � (Bj!0), B wins with a probability that converges to 1.

4.2 A doubt is enough

We can now demonstrate that, with a large population and when the common value com-

ponent is su¢ ciently important to generate doubt, approval voting almost surely selects

the full information Condorcet winner. Note that, if the common value component were

an additive shock to utility di¤erences, then unbounded support for this shock (e.g. if it

followed a normal distribution) would also be a su¢ cient condition for full information and

coordination equivalence to hold.
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Theorem 3 When the population size is large, doubt is a su¢ cient condition for approval

voting to have a unique equilibrium strategy, which satis�es full information and coordination

equivalence.

The intuition for Theorem 3 is similar to that of Theorem 1: majority voters have three

motivations for single or double voting. Their coordination motive induces them to double

vote if C is the main threat against either A or B. This implies that C cannot win in any

state of nature. Their common value motive induces them to double vote if they feel that

one of the majority alternatives has too high an expected vote share: if, say, A was among

the likely winners in state 0 (in which all voters prefer B to A) then even the staunchest A

supporters would prefer to vote AB. Thus, neither A nor B can be a likely winner in all

states of nature. This implies that there exists an interior state !� in which the probability

of being pivotal is much higher than in other states. Here, the information motive comes to

dominate: if i prefers A to B in state !�, and provided that C is not a threat, she strictly

prefers to play A than AB. Conversely, any i who prefers B to A would vote B. Theorem 3

establishes that, for n su¢ ciently large, only one strategy can balance these three motives,

and it necessarily leads to full information and coordination equivalence.

Note that the presence of a common value motive is necessary to obtain that result.

To make that clear, we now introduce the more classical model of purely private values.

This case has been treated in a di¤erent setup by Myerson and Weber (1993), who show

that multiple equilibria coexist. The purpose of our third benchmark below is to show

that inferior equilibria also exist in a Poisson game environment: approval voting fails to

always select the Condorcet winner when preferences are in purely private values. After

that, Theorem 4 shows that this result hinges on having a su¢ ciently large share of partisan

voters.

4.3 Benchmark 3: approval voting in a purely private value setup

The case opposite to our setup is when the common value component is absent. All voters

are thus partisan: they know with probability 1 which candidate they prefer. To suppress

the common value component in our setup, it is su¢ cient to assume that the state of nature

is known ex ante to be some interior state: 0 < ! = �! < 1. Two additional equilibria

then emerge: in one, B-partisans only approve of B, whereas A-partisans double vote. In

that case, B is the only likely winner, even if � (Aj�!) > �(Bj�!): Conversely, in the other
equilibrium A-partisans only approve of A, and B-partisans double vote, producing the

opposite outcome.
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A numerical example is su¢ cient to prove that the Condorcet winner may lose almost

surely in equilibrium:18 let n = 100, �! be known with probability 1, �(Aj�!) = 0:51;

�(Bj�!) = 0:19 and r (tC) = 0:30. Clearly, A is the Condorcet winner. Yet, there exists an

equilibrium in which B is the only likely winner: if B-partisans vote B and A-partisans vote

AB; a ballot for A is about 42,000 times less likely to be pivotal against either B or C than

a vote for B to be pivotal against C.19 It is thus a best response for A-voters to include B

in their ballot. Thus, A-partisans prefer to double vote, for the (unlikely) case in which A

may be among the top contenders. For the same reason, B-partisans prefer not to approve

of A: they always want to be pivotal against A.

As our next result shows, however, this inferior equilibrium requires that the group of

B-partisans is su¢ ciently large.

4.4 Approval voting in the presence of partisan voters

Together, Theorem 3 and Benchmark 3 show that the equilibrium properties of approval

voting feature a discontinuity at the point in which the doubt is arbitrarily small as opposed

to being absent. This would be a major issue if the results of Theorem 3 ceased to hold as

soon as some arbitrarily small fraction of the electorate was partisan. We now study the

case in which partisan and non-partisan voters coexist in the population.

This coexistence is obtained by setting 0 < ! < �! < 1: In this case, a fraction �(Bj�!) > 0
of the electorate prefers B to A with probability 1 and a fraction �(Aj!) > 0 of the electorate
prefers A to B with probability 1. These are the partisan voters. The largest fraction

of partisans is max[�(Aj!); �(Bj�!)]: The other majority voters, who represent a fraction
1 � r (tC) � (�(Aj!) + �(Bj�!)) of the population, have a doubt. Recall that r (tC) is the
expected share of the minority.

The next theorem demonstrates when full information and coordination equivalence

remains valid despite the presence of partisan voters:

Theorem 4 Approval voting produces full information and coordination equivalence if and

only if the largest fraction of partisans is no larger than 1� 2
p
(1� r(tC)) r(tC):

To understand the rationale for this result, it is useful to go back to the voters�incentives.

By de�nition, partisan voters have no common value motive. They double vote only when

their coordination motive dominates their information motive. That is, they double vote

18Nuñez (2010) develops a similar argument in greater detail.
19The probability ratio increases to 1046 with n = 1000 (Property 2 in Appendix A1).
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when C is a serious enough threat and their most preferred candidate has too small a

chance of winning the election. Imagine that, as in the example of Benchmark 3, candidate

B is expected to win in all states of nature ! 2 [!; �!]. Then, B-partisans have no reason to
double vote: lending support to A would increase the odds in favour of A at the expense of

B. Next, when do A-partisans and voters with a doubt prefer to double vote? Only when

their probability of being pivotal in favor of A is too small compared to their probability of

being pivotal between B and C. This requires that the B group is su¢ ciently large (which

reduces the probability of being pivotal between A and B) and that the minority group is

su¢ ciently large (which increases the probability of being pivotal between B and C).

The �ipside of this condition is that the fraction of voters with a �doubt�must not be too

small. The empirical question is thus whether it is large in reality. One strategy would be to

examine swings in opinion polls. Anecdotically, such swing are often substantial: good eco-

nomic conditions or major achievements by a head of state increase her support signi�cantly.

Bad economic conditions or her misbehavior reduce popular support. Arguably, such swings

only represent a fraction of the voters with a �doubt�as de�ned here. Indeed, �doubt�only

requires that a preference reversal may happen, even if with very low probability.

Finally, Theorem 4 does not imply that the full information Condorcet winner cannot

win in equilibrium when the fraction of partisan voters is large. It shows when there also

exists an equilibrium in which he is not sure to win. But under approval voting, there always

exists an equilibrium that ensures the victory of the full information Condorcet winner. This

contrasts with other electoral systems like plurality, for which such a good outcome cannot

be guaranteed, and for which C may be the only likely winner in some equilibria (Bouton

and Castanheira 2009, section 4.2).

5 Multinomial distribution

Until now, we assumed that the size of the population followed a Poisson distribution. To

show that our results do not hinge upon this assumption, we analyze here the polar case in

which the size of the population is known and �xed. A traditional way to analyze large voting

games with �xed population size is to consider a multinomial distribution: the size of the

population is �xed at n, and each voter is assigned a type t 2 ftA; tB; tCg with probabilities
r (tAj!) ; r (tBj!) and r (tC j!) respectively. For a strategy function �, the expected fraction
of voters playing  in state ! is still de�ned by (6). The probability of an action pro�le

x = fx (A) ; x (B) ; x (C) ; x (AB) ; x (AC) ; x (BC)g in state ! is given by:

Pr (xj!) = n!�� 
� ( j!)x( )

x ( )!
:
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Myerson (2000, p24) shows that, for su¢ ciently large n, pivot probabilities under such

Multinomial distributions are simply a monotone transformation of their Poisson equivalent.

In particular, the magnitude of a pivot probability in a multinomial game is given by:

mag (pivPQj!;multinomial) = log (1 +mag (pivPQj!;Poisson)) : (8)

It follows that the magnitude ratios behave exactly as in Poisson games. The only relevant

di¤erence between the multinomial and Poisson distributions is that, when the expected vote

share of an alternative P is exactly zero, the magnitude of the pivot probabilities involving P

are �1 with the multinomial distribution (instead of �1 in the Poisson distribution). That
is, a vote in favour of P could never be pivotal in the Multinomial game. Instead, pivot

probabilities are always strictly positive in Poisson games: the assumption of a Poisson

distribution acts as a tremble when the expected vote share of an alternative is zero. It

operates �as if�the probability that types tA (tB) vote for A (B) were bounded above zero.

Theorem 3 extends directly to the case of a multinomial distribution if we introduce such a

tremble.20

Formally, consider the setup of Section 4.2 in which there is doubt except for two di¤er-

ences:

Assumption 1 An arbitrarily small fraction " ! 0 of the electorate votes sincerely. That

is, if i 2 [�1; 1], then with probability ":

i votes A if E!Ui (Ajs) > E!Ui (Bjs) ; and

i votes B if E!Ui (Ajs) < E!Ui (Bjs) :

Assumption 2 The distribution of voters follows a multinomial distribution instead of a

Poisson distribution.

In that case:

Theorem 5 Under Assumptions 1 and 2, approval voting produces full information and

coordination equivalence in equilibrium.

Proof. First, note that, for " = 0, there are strategies for which some pivot probabilities are exactly
zero. For instance, if �i;s (A) = 1; 8i; s 2 [0; 1] � f0; 1g, a vote can never be pivotal in favour of B:

20 Interestingly, the Poisson assumption also re�nes away bizarre equilibria in which all voters vote for the

same candidate (A or B or C). With multinomial distributions, all pivot probabilities are exactly zero for

such strategy pro�les.

19



Pr (pivBAj!) = Pr (pivBC j!) = 0; 8!; which implies Gi (Bjs) = 0 and Gi (Ajs) = Gi (ABjs) ;8i; s:
Therefore, all majority types are indi¤erent between actions  = A and  = AB; and �i;s (A) = 1 is

a (self-ful�lling) equilibrium. By symmetry, �i;s (B) = 1 8s; i is also an equilibrium. Full information
and coordination equivalence does not hold in that case.

By contrast, for any "! 0, all pivot probabilities are strictly positive for any �:

Pr (pivAB j!) ;Pr (pivBAj!) ;Pr (pivAC j!) ;Pr (pivBC j!) > 0;8!:

Since, by (8) ; the ranking of magnitudes is the same under the Poisson and multinomial distributions,

the proof of Theorem 3 then applies as such to the multinomial distribution.

Further, even in the absence of sincere voters (" = 0), corner solutions would not be an

equilibrium either if voters had a lexicographic preference for approving of their preferred

candidate: if a vote can never be pivotal, say in favour of B, voters who a priori prefer B

would vote AB instead of A. Theorem 3 thus extends to that case as well: since A and B

have a strictly positive vote share, no pivot probability can be zero.

6 Conclusion

We analyzed a three-alternative election in which a majority of the electorate is divided

between two alternatives, A and B, and a minority supports a single alternative, C. In

contrast to standard analyses of electoral systems, we introduced slightly interdependent

preferences in the electorate in the sense that additional information about the relative

merits of di¤erent alternatives may a¤ect the preferences of voters in a common direction.

We showed that, when interdependencies are strong enough and the size of the electorate

su¢ ciently large, approval voting ensures that the full information Condorcet winner is

elected with a probability that approaches one. By contrast, classical electoral systems

(plurality, runo¤ and a broad class of scoring rules) do not produce such a desirable result.

This suggests that our understanding of coordination problems in elections is an artifact of

the assumption that voters have fully independent preferences. Indeed, interdependencies

in voters�preferences have typically been overlooked by voting theory. We therefore argue

that one must consider such interdependencies when studying the properties of electoral

systems in general.

A question that then springs to mind is why approval voting did not emerge in reality,

through natural selection. Our results o¤er two rationales for this. First, multiple equilibria

and coordination problems are still present if divisions are so deep that voters preferences

cannot be altered by information (Benchmark 3). Second, as we just explained, the risk of

coordination failures implies that opinion leaders, be they pundits, party leaders or lobbies,
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obtain the power to in�uence the outcome of the election. This may allow many actors to

extract informational rents, that approval voting would dissipate.

Arguably, the results rely on elaborate calculations from voters but the trade-o¤s and

strategies that emerge are quite natural. First, the equilibrium strategy proves extremely

intuitive: voters only need to understand that a multiple ballot is valuable whenever a

potentially good candidate is too weak or when a disliked candidate gets too strong. In the

extended setup with a continuum of types and states of nature, the pattern of specialization

that emerges is even more intuitive: voters who are closer to being indi¤erent between the

two majority candidates double vote, and those most in favor of either candidate single-vote.

Second, these trade-o¤s should also be robust to several extensions not considered in

the paper. Consider a world with more alternatives. If there are k alternatives in the

majority (and k associated states of nature), and l alternatives in the minority, the trade-o¤

remains identical: as long as their primary objective is to �ght one another, both majority-

block and minority-block voters �multiple-vote� for their own alternatives. Within the

majority, voters can multiple-vote to maintain the right balance between their alternatives

and make sure that each wins in its associated state of nature. Indeed, our results show that,

whenever an alternative trails behind, all majority-block voters want to support her with a

multiple ballot. Hence, although the analysis would become much more cumbersome given

the number of deviations to consider, the main insights remain unchanged.21 We can also

think of a world in which C is not the worst alternative for majority-block voters: alternative

A would still be the best in state a but would be the worst in state b, and vice versa for B.

For that case, it is easy to prove that approval voting produces an equilibrium that satis�es

full information and coordination equivalence: the strategy pro�le is exactly the same as

in the initial setup.22 Thus, despite di¤erent preferences, the full information Condorcet

winner still ranks �rst and the alternative C still ranks last. Unfortunately, in such a case,

the proof of uniqueness becomes intractable because ballots including alternative C are no

longer strictly-dominated actions.

Finally, we considered a model in which alternatives/candidates are passive. A natural

question for future research is to see how candidates behave when voters have interdependent

preferences. This analysis would be worth pursuing not only for approval voting but also

for other electoral systems such as plurality, runo¤ and the Borda count.

21Goertz and Maniquet (2011) may appear to contradict this statement, since they �nd a numerical

example in which approval voting fails to aggregate information. Yet, that example crucially relies on a large

fraction of common-valued voters having no doubt (they assign a probability zero to one state). This thus

seems to be a manifestation of our Theorem 4.
22The proof is available upon request.
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Appendices
Appendix A1 provide a reminder of some fundamental properties of Poisson games (Myerson

2000 and 2002), and derive some speci�c properties for the case of Approval Voting. Appendices

A2 and A3 contain the proofs of Theorems 1 and 2. Appendix A4 demonstrates the claims made in

Section 4.

7 Appendix A1: Poisson games in approval voting

In a Poisson game, population size follows a Poisson distribution, of mean n. As shown by Myerson

(2000), since types are attributed by iid draws, the number of voters of each type follows a Poisson

distribution, of mean r (tj!) n, and the number of  -votes follows a Poisson distribution of mean
� ( j!; �) n. It follows that the probability of observing x ( ) voters playing action  is:

Pr (x ( ) j!; �) = exp (�� ( j!; �) n) (�( j!;�) n)x( )
x( )! : (9)

For the sake of readability, we henceforth omit � from the notation and simply write � ( j!). From
(9) ; the probability of the action pro�le x � fx ( )g 2	 2 N8 is:

Pr (xj!) =
Y
 2	

 
exp (�� ( j!) n) (� ( j!) n)

k

k!

!
: (10)

An event E � Z (	) is a subset of the set of action pro�les that satisfy given constraints:

Myerson�s (2000) Magnitude Theorem shows that:

Property 1 For a large population of size n; the magnitude an event E in state ! is

mag (Ej!) � lim
n!1

log [Pr (Ej!)]
n

= max
x2E

X
 

x( )

n

�
1� log( x( )

n� ( j!) )
�
� 1:

Thus, the probability that event E occurs in state ! is exponentially decreasing in n: from Myerson

(2000, equation 3.1), the probability of event E can be approached by

Pr (xj!) ' exp (mag (Ej!) n)Q
 2	

p
2�x ( ) + �=3

: (11)

The absolute value of mag (Ej!) 2 [�1; 0] represents the �speed�at which the probability de-
creases towards 0: the more negative the magnitude, the faster the probability converges to 0 as n

increases. It follows that (Myerson 2000, Corollary 1):

Property 2 If two events E and E0 have di¤erent magnitudes: mag (Ej!) < mag (E0j!0) ; !; !0 2
fa; bg, the probability ratio of the two events is approximately exp[(mag(Ej!) � mag (E0j!0)) � n];
which converges to zero as n increases:

mag (Ej!) < mag (E0j!0) =) Pr (Ej!)
Pr (E0j!0) �!n!1

0:

24



That is, unless two events have the same magnitude, their likelihood ratio necessarily converges

either to zero or to in�nity when electorate size increases.

Our focus will be on pivotability events, i.e. when one additional ballot  can change the

outcome of the election. Under Approval Voting, this happens if increasing x ( ) to x ( ) + 1

modi�es which alternative has the largest number of votes. For instance, if X (A) = X (B) > X (C),

both A and B win the election with probability 1
2 . An additional ballot A (or AC) changes the

outcome to X (A) > max [X (B) ; X (C)] ; in which case A wins with probability 1. By contrast, if

X (C)�1 > X (A) = X (B) an additional ballot A (or AC) cannot a¤ect the outcome of the election:

it is not pivotal. Let pivPQ denote the event of being pivotal between alternatives P and Q: a single

ballot  induces the victory of P instead of Q.

The magnitude of the pivot event pivPQ is determined by the probability that two events realize

jointly: (i) P either has the same number of votes as Q or one vote less, and (ii) the third alternative,

R, does not have more votes than Q. The magnitude of event (i) is identi�ed by Property 3, which

is proven in Myerson (2002, pp231-2), exploiting the Dual Magnitude Theorem:

Property 3 The magnitude of the event that alternatives P and Q have approximately the same

number of votes is:

mag (P;Qj!) � �
�p

� (P j!) + � (PRj!)�
p
� (Qj!) + � (QRj!)

�2
;

with P 6= Q 6= R 2 fA;B;Cg :

Lemma 1 identi�es the ranking of pivot probabilities (the joint event (i) and (ii)) in three-

candidate elections under Approval Voting:

Lemma 1 For any triplet of alternatives P , Q; R 2 fA;B;Cg ; P 6= Q 6= R; let:

mag (pivPQj!) � lim
n!1

1
n log [Pr (X (Q)�X (P ) 2 f0; 1g & X (Q) � X (R) j!)] :

Then:

mag (pivPQj!) = mag (P;Qj!) if P and Q have the largest two expected vote shares,

< mag (P;Qj!) if P and Q have the lowest two expected vote shares.

It follows that, if E [X (P ) j!] > E [X (Q) j!] > E [X (R) j!], then:

lim
n!1

Pr (pivQRj!) =Pr (pivPQj!) = 0:

Proof. We use the Magnitude Theorem of Myerson (2000) and focus �rst on the case in which

E [X (A) j!] > E [X (C) j!] > E [X (B) j!] (the case E [X (A) j!] < E [X (C) j!] < E [X (B) j!] is
symmetric).
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The magnitude of the pivot probability between A and C (the other pivot events are computed

in the same way) is de�ned as:

mag(pivAC j!) = max
x

X
 

x ( )

n

�
1� log x ( )

n� ( j!)

�
� 1 (12)

s:t: x (A) + x (AB) = x (C) + x(BC) and x (C) + x(BC) � x(B) + x(AB):

If we abstract from the second constraint x (C) + x(BC) � x(B) + x(AB), or if this constraint is

not binding, (12) is actually de�ned by mag (A;Cj!) in Property 3 above. We refer to this as the
unrestricted magnitude (denoted by �).

Conversely, if the second constraint is binding at the optimum, the magnitude is maximized in

x (A) + x (AB) + x (AC) = x (C) + x (AC) + x (BC) = x (B) + x (AB) + x (BC), where the �rst

equality is the event that x (A) + x (AB) = x (C) + x(BC), and the second equality is the second

constraint made binding. We refer to the magnitude of this binding event as the restricted magnitude

(denoted by ��):

mag (piv��AC j!) = mag (piv��BC j!) = mag (piv��AB j!) ;

which, by de�nition, are smaller than the lowest unrestricted magnitude (mag
�
piv�PQj!

�
):

mag (piv��AC j!) � min
P;Q2fA;B;Cg

mag
�
piv�PQj!

�
:

Having observed this, we are now in a position to prove that, if the expected ranking is E [X (A) j!] >
E [X (C) j!] > E [X (B) j!], then:

mag (pivAC j!) = mag (piv�AC j!) and

mag(pivBC j!) = mag (piv��BC j!) :

Now, we prove thatmag (pivAC j!) is unrestricted. This is true if x (A)+x (AB) = x (C)+x (BC)

implies x (A) + x (AB) > x (B) + x (AB) at the optimum. By Lemma 2, we know that � (ACj!) =
� (BCj!) = 0: This implies x(AC) = x(BC) = 0: If we denote x (A) + x (AB) = x = x (C),

x (A) = �x, x (AB) = (1� �)x; we �nd that (12) is maximized in:

��AC =
� (Aj!)

� (Aj!) + � (ABj!) ; (13)

x�AC = n
p
[� (Cj!)][� (Aj!) + � (ABj!)];

x (B)
�
AC = n�(Bj!):

It remain to check that these values imply ��ACx
�
AC > x (B)

�
AC : Straightforward manipulations

show that the latter inequality holds i¤:s
� (Cj!)

� (Aj!) + � (ABj!) >
� (Bj!)
� (Aj!) ; (14)

in which both sides are smaller than one. Hence,
q

�(Cj!)
�(Aj!)+�(ABj!) >

�(Cj!)
�(Aj!)+�(ABj!) . By the assumed

expected ranking E [X (A) j!] > E [X (C) j!] > E [X (B) j!] ; we have � (Aj!)+� (ABj!) > � (Cj!) >
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� (Bj!) + � (ABj!) ; which in turn implies �(Cj!)
�(Aj!)+�(ABj!) >

�(Bj!)+�(ABj!)
�(Aj!)+�(ABj!) >

�(Bj!)
�(Aj!) ; which proves

that (14) holds and that mag(pivAC j!) is always unrestricted.

Second, we need to prove that mag (pivBC j!) is restricted. This is true if x (B) + x (AB) =

x (C) + x (AC) implies x (A) + x (AB) > x (B) + x (AB) at the optimum, that is:

��BCx
�
BC < x (A)

�
BC ; (15)

where

��BC =
� (Bj!)

� (Bj!) + � (ABj!) ;

x�BC = n
p
[� (Cj!) + � (ACj!)][� (Bj!) + � (ABj!)];

x (A)
�
BC = n�(Aj!):

(the derivation of these critical values ��BC , x
�
BC , and x(A)

�
BC is similar to that of �

�
AC , x

�
AC , and

x (B)
�
AC in (13)). To show that (15) holds, we proceed as with (14) and must show that:s

� (Cj!)
� (Bj!) + � (ABj!) <

� (Aj!)
� (Bj!) ;

in which both fractions are larger than one. This implies:
q

�(Cj!)
�(Bj!)+�(ABj!) <

�(Cj!)
�(Bj!)+�(ABj!) . By

the expected ranking, the latter is strictly smaller than �(Aj!)+�(ABj!)
�(Bj!)+�(ABj!) ; which is itself smaller than

�(Aj!)
�(Bj!) ; which proves that mag(pivBC j!) is always restricted and completes the proof.

The proof of the other possible expected rankings, namely E [X (A) j!] > E [X (B) j!] > E [X (C) j!]
(the case E [X (B) j!] > E [X (A) j!] > E [X (C) j!] is symmetric) and E [X (C) j!] > E [X (A) j!] >
E [X (B) j!] (the case E [X (C) j!] > E [X (B) j!] > E [X (A) j!] is symmetric), proceeds in the same
manner.

Remark 1 The correlation introduced by double voting implies that the largest magnitude need not

be between the top two alternatives: for a given di¤erence in expected vote shares, if two alternatives

are more correlated through double voting, the probability of being pivotal between them is reduced.

Thus, the largest magnitude can be the one between the alternatives that rank �rst and third in terms

of expected vote shares.

Finally, the following Property proves useful to compare two pivot probabilities with the same

magnitude.

Property 4 (Myerson 2000, Theorem 2) The probability that two actions,  and  0 receive a number

of votes that di¤ers by a constant c (c << n) in state of the nature ! 2 fa; bg, is:

lim
n!1

Pr
�
x( ) = x( 0) + cj!

�
Pr
�
x( ) = x( 0)j!

� =

�
�( j!)
�( 0j!)

�c=2
:
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8 Appendix A2: Proof of Theorem 1

This Appendix proves Theorem 1. Each step of the proof is presented in a di¤erent subsection. In the

�rst, we identify the voters�expected payo¤s and show that only three actions in 	 are undominated.

Then, Lemmas 3 and 4 show that in equilibrium the outcome of the election must reveal information

about the actual state of nature. Third, Lemmas 5 and 6 show that voters specialize: types tA mix

between A and AB, whereas types tB mix between B and AB: Fourth, Lemma 7 shows that A must

have the largest expected vote share in state a, and similarly for B in state b. Finally, Lemma 8

shows that, for n large, the equilibrium is unique.

8.1 Payo¤s and dominated strategies

Lemma 2 For a majority-block voter t 2 ftA; tBg, in equilibrium:

�t (A) + �t (B) + �t (AB) = 1: (16)

The other actions  2 fC;AC;BC;ABC;?g are strictly dominated.

Proof. The expected utility of a majority voter t 2 ftA; tBg is:

EU (t) = q (ajt) [Pr (A winsja)� Pr (C winsja)] + q (bjt) [Pr (B winsjb)� Pr (C winsjb)]:

Compare actions AB and ABC: while the latter can never be pivotal, an AB-ballot can be pivotal

against C, either in favor of A or in favor of B: Both events increase expected utility. Hence, AB

strictly dominates ABC. All other strict dominance relationships are obtained by performing similar

two-by-two comparisons: AB strictly dominates ABC; ? and C; A strictly dominates AC; and B

strictly dominates BC.

The value of each undominated action is given by G ( jt), the expected gain of action  2
fA;B;ABg over abstention, ?:

G (Ajt) = q (ajt) [Pr (pivAB ja) + 2Pr (pivAC ja)]
+q (bjt) [Pr (pivAC jb)� Pr (pivAB jb)] ;

(17)

G (Bjt) = q (ajt) [Pr (pivBC ja)� Pr (pivBAja)]
+q (bjt) [Pr (pivBAjb) + 2Pr (pivBC jb)] ;

(18)

and G (ABjt) = q (ajt) [Pr (pivBC ja) + 2Pr (pivAC ja)]
+q (bjt) [Pr (pivAC jb) + 2Pr (pivBC jb)] :

(19)

These gains depend on the voter�s type only through q (!jt), and on the state of nature through the
pivot probabilities Pr (pivPQj!). These pivot probabilities depend on the strategy, �, but we omit �
from the notation for the sake of readability.
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8.2 No informational trap under approval voting

Now we show that the election result under approval voting must be expected to produce information

about the state of nature. The only case in which the outcome of the election cannot generate

information is when:

De�nition 4 A strategy �IT produces an Informational Trap if the expected result of the election

is independent of the state of nature:

E
�
X (P ) ja; �IT

�
= E

�
X (P ) jb; �IT

�
; 8P 2 fA;B;Cg :

Lemma 3 shows that only one undominated strategy could produce an informational trap. Lemma

4 then shows that this candidate strategy cannot be an equilibrium in a large population game.

Lemma 3 If a strategy �IT produces an informational trap, then:

(i) All majority voters must adopt the same strategy;

(ii) Given �IT , it is never a best response for a type tA (resp. tB) to play B (resp. A);

(iii) The only undominated strategy satisfying (i) and (ii) is thus: �tA (AB) = 1 = �tB (AB) :

Proof. �ITtA = �ITtB follows immediately from (6) : For such a strategy, (10) in Appendix A1 implies

that Pr (pivPQja) = Pr (pivPQjb) for all P;Q = A;B;C. Introducing this in (17)-(19) directly shows

that G (ABjtA) > G (BjtA) and G (ABjtB) > G (AjtB) for any strategy �ITtA = �ITtB . This in turn

implies that �tB (A) = 0 = �tA (B) ; which by (6) implies that �tA (AB) = 1 = �tB (AB) is the only

strategy pro�le in undominated strategies that produces an informational trap.

The intuition is that, when voters do not expect the election to elicit additional information,

they want to play a �sincere strategy�of approving of their a priori preferred alternative (part ii).

Thus, the only action that can be used both by types tA and tB is AB (part iii). In that case, A

and B tie necessarily.

However, such a strategy cannot be an equilibrium when the electorate size, n, is su¢ ciently

large:

Lemma 4 There exists �n such that, for any n � �n, there is no equilibrium with an informational

trap.

Proof. By Lemma 3, the only strategy function that may produce an informational trap is �tA (AB) =

1 = �tB (AB) ; which would imply that X (A) = X (B) for any realized number of voters. Hence,

Pr (pivAB jX (A) > X (C)) = 1=2. Since r (tC j!) < 1=2; we have: limn!1 Pr (X (A) > X (C)) = 1.

Hence, by (10) and (11) in Appendix A1, we have:

(i) Pr (pivAB j!; n) < 1=2 and lim
n!1

Pr (pivAB j!; n) = 1=2;

(ii) Pr (pivPC j!; n) > 0 and lim
n!1

Pr (pivPC j!) = 0 for P 2 fA;Bg :
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Since these pivot probabilities are monotonic in n, there must exist some �n such that

max [G (Ajt; n � �n) ; G (Bjt; n � �n)] > G (ABjt; n � �n) ; 8t 2 ftA; tBg

The reason for this �no informational trap�result is that, when all majority voters double vote,

X (A) and X (B) are necessarily equal. As population size increases, the probability that A and B

tie for �rst place thus converges to 1, whereas the probability of being pivotal against C decreases

to 0. Hence, all majority voters develop an incentive to deviate from �IT and single-vote for their a

priori preferred alternative.

8.2.1 Voters specialize

The next lemma shows that no majority voter would ever mix between actions A and B. Then, we

show that types tA and tB respectively mix between actions A and AB, and B and AB.

Lemma 5 In equilibrium, �t (A)� �t (B) = 0, 8t.

Proof. A necessary condition for a type t 2 ftA; tBg to play both A and B with strictly positive

probability is that:

G(Ajt) = G(Bjt) � G (ABjt) : (20)

From (17) ; (18) and (19) ; it is easy to check that:

G(Ajt) � G (ABjt)() q(bjt)
q(ajt) �

1

M1
� Pr(pivAB ja)�Pr(pivBC ja)

Pr(pivAB jb)+2Pr(pivBC jb) (21)

G(Bjt) � G (ABjt)() q(ajt)
q(bjt) �M2 � Pr(pivBAjb)�Pr(pivAC jb)

Pr(pivBAja)+2Pr(pivAC ja) : (22)

Hence, G(Ajt); G(Bjt) � G (ABjt) require Pr (pivAB ja) > Pr (pivBC ja) and Pr (pivBAjb) > Pr (pivAC jb).

Using (17) and (18), a necessary condition for G(Ajt) = G(Bjt) is:

q (ajt)
q (bjt) =

Pr (pivBAjb)� Pr (pivAC jb) + Pr (pivAB jb) + 2Pr (pivBC jb)
Pr (pivAB ja)� Pr (pivBC ja) + Pr (pivBAja) + 2Pr (pivAC ja)

: (23)

Now, we prove that (20) can never hold. Indeed, condition (20) requires:

M1 �M2; (24)

but we can identify a lower bound for M1 and an upper bound for M2 and show that the former is

strictly larger than the latter, hence a contradiction.

M1 is strictly increasing in Pr (pivBC ja) and Pr (pivBC jb). A lower bound to M1 is thus found

by setting these two pivot probabilities equal to 0. Similarly, an upper bound to M2 is found by

setting Pr (pivAC ja) and Pr (pivAC jb) equal to zero. This establishes that:

Pr (pivAB jb)
Pr (pivAB ja)

< M1 and M2 <
Pr (pivBAjb)
Pr (pivBAja)

; (25)
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and hence that a necessary condition for (24) is that:

Pr (pivAB jb)
Pr (pivBAjb)

Pr (pivBAja)
Pr (pivAB ja)

< 1:

Using Property 4 (in Appendix A1), the left-hand side of this expression is equal to:s
� (Aja)
� (Ajb)

� (Bjb)
� (Bja) ;

which cannot be smaller than 1. Indeed, by (23), types tA must vote for A with a higher probability

than types tB , since
q(ajtA)
q(bjtA) >

q(ajtB)
q(bjtB) . Hence, in any equilibrium:

� (Aja)
� (Ajb) � 1 and

� (Bjb)
� (Bja) � 1: (26)

It follows that G(Ajt) = G(Bjt) implies G (ABjt) > G(Ajt); and therefore that �t (A) > 0 implies
�t (B) = 0 and conversely.

The intuition relates to the swing voter�s curse (Feddersen and Pesendorfer 1996; Myerson 1998a):

in a setup with two candidates and common valued voters (i.e. our setup but without candidate C),

voters avoid mixing between actions A and B because they fear being �mistakenly pivotal,� for

instance in favor of B against A when the actual state is a. In our three-candidate setup, voters

avoid mixing between actions A and B for the same reason but, because of C, do not either want

to abstain. Approval voting allows them to play action AB: This allows them to abstain between A

and B, while maximizing their probability of being pivotal against C.

Lemma 6 There exists �n, such that for any n � �n; in equilibrium, �tA (A) > 0 and �tB (B) > 0.

Thus: �tA (A) + �tA (AB) = 1 and �tB (B) + �tB (AB) = 1.

Proof. We need to show that �tA (A) and �tB (B) are strictly positive in equilibrium. To this end,

we show that:

�tB (B) > 0 and �tA (A) = 0 (27)

leads to a contradiction. Indeed, (27) implies � (Aj!) = 0 in both states. Hence, by Property 3 (in
Appendix A1):

mag(A;B) = �� (Bj!) :

By (26), we have: � (Bja) < � (Bjb). One can check that whether magnitudes are restricted or
not, this implies that limn!1 Pr (pivBAjb) =Pr (pivBAja) = 0 and therefore that limn!1M2 = 0

in the proof of Lemma 5. Instead, �tB (B) > 0 imposes that M2 be strictly positive, which shows

that �tA (A) = 0 contradicts the possibility that �tB (B) > 0. By symmetry, we cannot either have:

�tA (A) > 0 and �tB (B) = 0.

Together with Lemmas 4 and 5, this proves that, in equilibrium, we must have �tA (A) > 0 and

�tB (B) > 0.
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Lemma 6 implies that majority-type voters always include their a priori preferred alternative in

their ballot.23 Hence, and perhaps surprisingly, since types tA always include A in their ballot, their

strategy only in�uences the vote share of B: the more types tA double vote, the higher the expected

vote share of B, whereas the expected vote share of A is left unchanged. Similarly, it is types tB�s

strategy that determines the expected vote share of A.

8.2.2 Electing the Full Information Condorcet winner

Here, we show that the full information Condorcet winner must be the only likely winner:

Lemma 7 Any equilibrium strategy must produce the following ranking of expected vote shares:

� (Aja) + � (ABja) > � (Bja) + � (ABja) � �(C), and

� (Bjb) + � (ABjb) > � (Ajb) + � (ABjb) � �(C):

Proof. We show that any strategy satisfying Lemma 6 must produce a speci�c ranking of pivot

probabilities which can only be satis�ed if the full information Condorcet winner is the only likely

winner.

From Lemma 6, types tA and tB must single-vote with positive probability in equilibrium. This

implies that the di¤erences G (AjtA)�G (ABjtA) and G (BjtB)�G (ABjtB) must be non-negative.
Formally, using (17)� (19) ; the voters�relevant comparison of payo¤s is the following:

G (AjtA)�G (ABjtA) = q (ajtA) [Pr (pivAB ja)� Pr (pivBC ja)]
�q (bjtA) [2 Pr (pivBC jb) + Pr (pivAB jb)] ? 0;

(28)

G (BjtB)�G (ABjtB) = q (bjtB) [Pr (pivBAjb)� Pr (pivAC jb)]
�q (ajtB) [2 Pr (pivAC ja) + Pr (pivBAja)] ? 0:

(29)

By (28) ; a necessary condition to have G (AjtA) � G (ABjtA) � 0 is that Pr (pivAB ja) be suf-
�ciently large compared to the other pivot probabilities in (28). Similarly, Pr (pivBAjb) must be
su¢ ciently large compared to the other pivot probabilities in (29) : That is, from Property 2 (in

Appendix A1):

mag (pivAB ja) � max fmag (pivAB jb) ;mag (pivBC ja) ;mag (pivBC jb)g ;
mag (pivBAjb) � max fmag (pivBAja) ;mag (pivAC ja) ;mag (pivAC jb)g :

(30)

For (30) to be satis�ed, mag (pivAB ja) and mag (pivBAjb) must be equal. By Property 3 and
Lemma 1 (in Appendix A1), a necessary condition is that:�p

r (tAja) � �tA (A)�
p
r (tB ja) � �tB (B)

�2
=�p

r (tAjb) � �tA (A)�
p
r (tB jb) � �tB (B)

�2
:

(31)

23 In a private value setup, Brams and Fishburn (2007, Theorem 2.1) show that a voter always includes her

most preferred alternative in her ballot. Lemma 6 thus extends their Theorem to voters with state-dependent

preferences.
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This condition depends on �tA (A) and �tB (B). De�ning � � �tA (A) =�tB (B) ;one readily sees that

condition (31) is satis�ed i¤:���pr (tAja) � ��pr (tB ja)��� = ���pr (tB jb)�pr (tAjb) � ���� ;
which has a unique solution in R+:

�� =

 p
r (tB ja) +

p
r (tB jb)p

r (tAja) +
p
r (tAjb)

!2
: (32)

This solution in turn implies: � (Aja) > � (Bja) and � (Ajb) < � (Bjb). By Lemma 1 and since
there is no double voting involving alternative C, condition (30) cannot be satis�ed if �(C) >

� (Bja) + � (ABja) and/or �(C) > � (Ajb) + � (ABjb) : Therefore, in equilibrium:

� (Aja) > � (Bja) � �(C)� � (ABja) , and

� (Bjb) > � (Ajb) � �(C)� � (ABjb) :

The proof builds on the fact that types tA and tB must single-vote with positive probability

in equilibrium (Lemma 6). Both types of majority voters are willing to single vote if neither the

coordination motive nor the common-value motive dominates the information motive. Otherwise,

majority voters would double vote, either to support a trailing majority candidate (common-value

motive) or to �ght C (coordination motive). Therefore, in equilibrium, no majority candidate can

trail in this way, i.e. A (resp. B) must have the largest expected vote share in a (resp. b) and in

both states of nature, C�s vote share must be the lowest of all three.

In proving Lemma 7, we also found that a necessary condition for the information motive to be

stronger than both the coordination and common-value motives is that �tA (A) = �tB (B) �
� (see

32). This condition ensures that the pivot probabilities between A and B have the same magnitude

in the two states of nature. It now remains to prove that the equilibrium strategy is unique.

8.2.3 Equilibrium uniqueness

To prove uniqueness, we focus on the case in which �� � 1 (the complementary case amounts to

switching labels A and B). We show that �tA (A) = ���tB (B) is the unique best response of types tA

given a strategy �tB (B) and that there is a unique value of �tB (B) that can be chosen in equilibrium:

Lemma 8 There exists an expected population size �n, such that for any n � �n; the equilibrium

strategy is unique and such that, in the limit n!1:
i) �tB (B) = 1, �tA (A) = �� i¤, for this strategy,

mag(pivAB ja) = mag(pivAB jb) � max
!
fmag (pivAC j!) ;mag (pivBC j!)g :
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ii) Otherwise, �tB (B) = ��, �tA (A) = ��� with �� 2 (0; 1) such that:

mag(pivAB ja) = mag(pivAB jb) = max
!
fmag (pivAC j!) ;mag (pivBC j!)g : (33)

Proof. We proceed in two steps: �rst, we show that �tA (A) = ���tB (B) is the unique best response

of types tA given the strategy of types tB . Second, we prove that there is a unique equilibrium strategy

��tB (B).

From (30) and (32), we must have in equilibrium:

mag (pivAB ja) = mag (pivAB jb) � maxfmag (pivBC ja) ;mag (pivBC jb) ;
mag (pivAC ja) ;mag (pivAC jb)g:

(34)

We can check that types tA never want to deviate from �tA (A) = ���tB (B): for any �tA (A) <

���tB (B), the expected share of alternative B increases in both states. Hence, mag (pivAB ja) in-
creases above mag (pivAB jb), whereas mag (pivBC ja) and mag (pivBC jb) decrease. This implies (see
the proof of Lemma 5):

q (bjtA)
q (ajtA)

< lim
n!1

1

M1
� Pr(pivAB ja)�Pr(pivBC ja)

Pr(pivAB jb)+2Pr(pivBC jb) =1;

and hence: G(AjtA) > G (ABjtA). Therefore, �tA (A) < ���tB (B) cannot be true in equilibrium.

For any ���tB (B) < 1, we also have to check that �tA (A) > ���tB (B) cannot be an equilibrium

either. Following the same procedure as above, one can check that �tA (A) > ���tB (B) implies:

q (bjtA)
q (ajtA)

> lim
n!1

1

M1
� Pr(pivAB ja)�Pr(pivBC ja)

Pr(pivAB jb)+2Pr(pivBC jb) � 0;

which in turn implies G(Ajt) < G (ABjt). Hence, �tA (A) > ���tB (B) cannot be true in equilibrium.

Therefore, when (34) holds, ��tA (A) = ���tB (B) is the unique best response of types tA to �tB (B).

It remains to prove that ��tB (B) is unique. Two cases must be considered:

Case 1: G(BjtB)�G(ABjtB) � 0 in �tB (B) = 1; �tA (A) = ��:

In that case, �tB (B) = 1 is the only possible best response for types tB . Indeed, �tB (B) < 1

would imply �tB (AB) > 0. This increases the expected vote share of A in both states of nature. Hence

mag (pivBAjb) increases above mag (pivBAja), whereas mag (pivAC ja) and mag (pivAC jb) decrease.
Using M2 (see proof of Lemma 5), this implies:

q (ajtB)
q (bjtB)

< lim
n!1

M2 � Pr(pivBAjb)�Pr(pivAC jb)
Pr(pivBAja)+2Pr(pivAC ja) =1;

and henceG(BjtB) > G (ABjtB) : Therefore, �tB (B) = 1 is the unique best response to �tA (A) = ��.

It remains to show that types tB would deviate from any f�tA (A) ; �tB (B)g = f���; �g if � < 1.
To this end, we need to show that

lim
n!1

G(BjtB)�G(ABjtB)
Pr(pivAB ja)

= q(bjtB)
Pr(pivBAjb)
Pr(pivAB ja)

� q(ajtB)
Pr(pivBAja)
Pr(pivAB ja)

> 0; (35)
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for any f�tA (A) ; �tB (B)g = f���; �g, � < 1.

The strategy of the types tA implies:

lim
n!1

G(AjtA)�G(ABjtA)
Pr(pivAB ja)

= q(ajtA)� q(bjtA)
Pr(pivAB jb)
Pr(pivAB ja)

= 0

=) Pr(pivAB jb)
Pr(pivAB ja)

=
q(ajtA)
q(bjtA)

:

By Myerson�s o¤set theorem (Property 4 in Appendix A1): Pr(pivBAj!) = Pr(pivAB j!)
q

�(Aj!)
�(Bj!) :

Hence, (35) can be rewritten as:

q(bjtB)
q(ajtB)

q(ajtA)
q(bjtA)

>

s
� (Aja) � (Bjb)
� (Bja) � (Ajb) :

By (4) ; the left-hand side of this inequality is equal to: �(Aja)�(Bjb)
�(Bja)�(Ajb) > 1, which proves that (35)

holds.

Case 2: G(BjtB)�G(ABjtB) < 0 in �tB (B) = 1; �tA (A) = ��:

In this case, there must exist a �� 2 (0; 1) such that, for f�tA (A) ; �tB (B)g = f����; ��g, we have:
G(BjtB)�G(ABjtB) = 0. Indeed, by Lemma 4, G(BjtB)�G(ABjtB) > 0 for �tA (A) = 0 = �tB (B).

The existence of �� immediately follows from the continuity of the G function.

This value of �� is unique and such that:

mag (pivAB ja) = mag (pivAB jb) = maxfmag (pivBC ja) ;mag (pivBC jb) ;
mag (pivAC ja) ;mag (pivAC jb)g:

(36)

Indeed, any � < �� implies that the total expected vote shares of alternatives A and B increase.

Since (36) implies that C is third in both states, the magnitudes mag (pivPC j!) must decrease, for
any P 2 fA;Bg and ! 2 fa; bg. In contrast, the magnitudes mag (pivAB j!) must increase, since:

mag (pivAB ja) = mag (pivAB jb) = �
�p

r (tAja) � �� �
p
r (tB ja)

�2
�

is strictly decreasing in �. Hence (34) holds with a strict inequality for any � < ��. This implies that

(35) holds, and hence that G(BjtB)�G(ABjtB) > 0 for any f�tA (A) ; �tB (B)g = f���; �g, � < ��.

Similarly, one can check that (34) is violated for any � > ��: it implies G(BjtB)�G(ABjtB) < 0.
This proves that (36) must hold in �tA (A) = ���� and �tB (B) = ��, and that the solution to �� is

unique.

The logic of the proof is straightforward: if there is �too much�double voting, both A�s and B�s

vote shares become large as compared to that of C, and the information motive dominates: both

types tA and tB strictly prefer to single-vote for their initially preferred alternative. Single voting

increases the vote gap between A and B and hence the precision of the voting signal. The only

obstacle to furthering this gap is the threat posed by C: if (33) binds, then the coordination motive
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induces both types tA and tB to keep double voting, to ensure that A and B remain su¢ ciently

ahead of C. The equilibrium is reached at the unique value of �tA (A) and �tB (B) for which the

coordination motive balances the information motive �unless a corner solution is reached.

9 Appendix A3: Proof of Theorem 2

It is su¢ cient to show that there exists at least one equilibrium in which a given candidate, say B, is

the only likely winner in both states of nature. Here, we show that there is an equilibrium in which

all majority-group voters play action  = BA that gives 1 vote to B and 
 < 1 vote to A.

Denote by x (t) the realized number of t-voters. For the above-mentioned strategy, the number of

votes received by B is X(B) = x (tA)+x (tB). The number of votes received by A is X(A) = 
 �X (B),
and the number of votes received by C is x (tC).

A deviation by one voter who plays action  = A can be pivotal in favour of A i¤, with her

additional vote, A has at least as many ballots as either B or C. This requires:

X(B)�X(A) 2 [0; 1], x (tA) + x (tB) � 1
1�
 , and

x (tC) � 1
1�
 :

The probability of this joint event is:

Probability that x(tA)+x(tB) � (1�
)�1z }| {
exp (�(1� r (tC)) n)

b(1�
)�1cX
k=0

((1�r(tC) n)k
k! �

Probability that x(tC) � (1�
)�1z }| {
exp (�r (tC) n)

b(1�
)�1cX
k=0

(r(tC) n)
k

k!

= exp (�n)�
b(1�
)�1cX

k=0

((1�r(tC) n)k
k! �

b(1�
)�1cX
k=0

(r(tC) n)
k

k! ;

which has magnitude �1. In other words, mag (pivAC j!;  ) = �1 = mag(pivAB j!;  ) where
mag(pivPQj!;  ) is the magnitude of the probability that voting  be pivotal between P and Q

in state !.

This voter must compare the value of playing this action A with that of playing BA. If she plays

BA then B necessarily collects more votes than A, since A has a most 
 < 1 vote and B has at least

1 vote. Thus a vote BA can only be pivotal in favour of B. Hence:

G(Ajt) = q (ajt) [2 Pr (pivAC ja;A) + Pr(pivAB ja;A)]

+q (bjt) [Pr (pivAC jb; A)� Pr(pivAB jb; A)];

G(BAjt) = q (ajt) [Pr (pivBC ja;BA)� Pr (pivBAja;BA)]

+q (bjt) [2 Pr (pivBC jb; BA) + Pr (pivBAjb; BA)] ;
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Since types tA and tB play the same strategy, vote shares and pivot probabilities are identical across

states of nature. We thus have that:

G(Ajt) > G(BAjt) i¤

q (ajt) [2 Pr (pivAC j!;A) + Pr(pivAB j!;A) + Pr (pivBAj!;BA)� Pr (pivBC j!;BA)] > :::

::: > q (bjt) [2 Pr (pivBC j!;BA) + Pr(pivAB j!;A) + Pr (pivBAj!;BA)� Pr (pivAC j!;A)]:

From Property 2 in Appendix A1, for n!1, the pivot probabilities with a magnitude of �1 become
in�nitesimal compared to the probability of being pivotal between B and C:

lim
n!1

2Pr(pivAC j!;A)+Pr(pivAB j!;A)+Pr(pivBAj!;BA)
Pr(pivBC j!;BA) = lim

n!1
Pr(pivAB j!;A)+Pr(pivBAj!;BA)�Pr(pivAC j!;A)

2 Pr(pivBC j!;BA) = 0:

Hence, as n ! 1; the factor multiplying q (ajt) converges to a negative value, whereas the factor
multiplying q (bjt) converges to a positive value. This shows that G(Ajt) < G(BAjt).

A voter may also consider voting AB: That ballot can only be pivotal in favour of A if X(B)�
X(A) 2 [0; 1� 
], which requires that x (tA) + x (tB) � 1. Repeating the same steps as above shows
that the magnitudes of pivot probabilities involving A are also equal to �1 in this case, and hence
that G(BAjt) > G(ABjt).24

Appendix A4: Proofs for Section 4

Lemma 9 The scoring rules f0; �g with � < 1 and the runo¤ electoral system do not produce full

information and coordination equivalence when n!1.

Proof. Consider a strategy �� in which all majority voters play the same action, e.g. A: This strategy

produces an informational trap (see De�nition 4 in Appendix A2), in which A is the only likely

winner of the election. Given ��, pivot probabilities are state-of-nature invariant (i.e. Pr (pivPQj!) =
Pr (pivPQj!0) 8!; !0 2 
 and any P;Q 2 fA;B;Cg). Hence, for such a strategy, the payo¤associated,
for instance, with action A boils down to:

Gi (Ajs) �
Z 1

0

q (!js) [Pr (pivAB j!) �U (AB; ij!) + Pr (pivAC j!) �U (AC; ij!)] d!

= Pr (pivAB)

Z 1

0

q (!js) �U (AB; ij!) d!| {z }
E!js�U(AB;i)

+ Pr (pivAC)

Z 1

0

q (!js) �U (AC; ij!) d!| {z }
E!js�U(AC;i)

Payo¤s simplify in the same way for any other action permitted by the electoral system.

If all majority voters play A, we have:

lim
n!1

Pr (pivAB)

Pr (pivAC)
= lim
n!1

Pr (pivBC)

Pr (pivAC)
= 0:

24The action B produces exactly the same payo¤s as BA; which implies that there exists another equi-

librium, in which all voters play B.
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Therefore, independently of their private preference, for all majority voters, the value of action A,

Gi (Ajs) ' Pr (pivAC)E!js�U (AC; i), becomes in�nitely larger than Gi (Bjs), and than Gi (BAjs)
in the scoring rules considered in Theorem 2. The strategy �� is thus an equilibrium for all scoring

rules f0; �g with � < 1. The same logic applies to runo¤ elections: the Duverger�s Law equilibria in
Bouton (2010) also exist in this extended setup.

Proof of Theorem 3. Like in the simple setup, majority voters choose one out of three actions:

vote A, vote B; or vote AB. Denote �U (PQ; ij!) � U (P; ij!)� U (Q; ij!), P;Q 2 fA;B;Cg. The
payo¤ associated with each action is:

Gi (Ajs) =

Z 1

0

q (!js) [Pr (pivAB j!) �U (AB; ij!) + Pr (pivAC j!) �U (AC; ij!)] d!

Gi (Bjs) =

Z 1

0

q (!js) [�Pr (pivBAj!) �U (AB; ij!) + Pr (pivBC j!) �U (BC; ij!)] d!

Gi (ABjs) =

Z 1

0

q (!js) [Pr (pivAC j!) �U (AC; ij!) + Pr (pivBC j!) �U (BC; ij!)] d!:

We know that pivot probabilities are determined by the action pro�le of the voters. Given an action

pro�le �, let mag1 denote the largest magnitude:

mag1 � max
!
[max fmag (pivAB j!) ;mag (pivAC j!) ;mag (pivBC j!)g] ;

and let !1 be the argmax of that expression. Similarly, the second largest magnitude (i.e. excluding

the event pivPQ associated with the largest magnitude) is denoted mag2 and its argmax is !2.

Now, we show by contradiction that the largest magnitude must be the one between A and

B: imagine that mag1 = mag (pivAC j!1). Then, it is straightforward to check that Gi (ABjs) >
Gi (Bjs), 8i; s. Thus, all majority voters would either vote A or AB. Yet, since there cannot be an
informational trap (see De�nition 4. It is straightforward to show that Lemma 4 in Appendix A2 also

holds in the present setup), the excess vote share of A over B must be increasing in !; which implies:

mag2 = mag (pivAB j!2 = 0). But in that case, no majority voter wants to be pivotal against B
(U (A; ij0) � U (B; ij0) < 0; 8i): all would vote AB, which leads to a contradiction. By symmetry,
the same holds for mag1 = mag (pivBC j!1). Thus, mag1 must be mag (pivAB j!1).

Now, we need to show that (a) !1 is an interior state, and (b) that � (Aj!1) = � (Bj!1): (a)
if !1 2 f0; 1g, then all majority voters would vote �en bloc� either A or B, which leads to an

informational trap; a contradiction. If instead !1 2 (0; 1), then some voters i prefer A to B in state

!1, and either vote A or AB (and conversely for those who prefer B to A).

(b) we show that � (Aj!1) = � (Bj!1): if � (Aj!1) > � (Bj!1), then the expected number
of voters who include A in their ballot must be larger than the expected number of voters who

include B in their ballot. But there must then also exist a state ! < !1 for which � (Aj!1) >
� (Aj!) > � (Bj!) > � (Bj!1), which implies mag(pivAB j!) > mag(pivAB j!1). This contradicts the
de�nition of !1. Since the same reasoning can be applied to � (Aj!1) < � (Bj!1), it must be that
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� (Aj!1) = � (Bj!1) ; which in turn implies that mag(pivAB j!1) = 0. Finally, this also implies that
A has a larger vote share than B i¤ � (Aj!) > � (Bj!), and conversely.

Proof of Theorem 4. Let 
 (A) denote the set of states ! for which � (Aj!) > � (Bj!) ; and
let 
 (B) denote the set of states ! for which � (Aj!) < � (Bj!) : There is full information and
coordination equivalence (FICE) when, for any equilibrium strategy �, alternative A (resp. B) has

the largest expected vote share i¤ ! 2 
 (A) (resp. 
 (B)).

We are looking for the conditions on the distribution of voter preferences such that FICE does not

hold under approval voting. To do this, we conjecture a strategy �F for which FICE is not satis�ed

and proceed in 4 steps: �rst, we show that C cannot be the only likely winner in any state, otherwise

�F is not an equilibrium. Second, we show that if, say B wins in some states ! 2 
 (A) under �F ,
then B must actually be winning in all states, otherwise �F is non generic. Third, we identify the

necessary condition for B to win in all states. Fourth, we show that this necessary condition is also

su¢ cient.

Step I: C cannot be the only likely winner in any state:

Let �
C
�
�F
�
� 
 denote the subset of states of nature in which C has the largest expected vote

share, for a voting strategy �F . If �
C
�
�F
�
6= ?; thenmax!mag (pivAB j!) < maxfmag (pivAC j!) ; mag (pivBC j!)g

by Lemma 1: the vote share of A being weakly increasing in ! and the vote share of B being weakly

decreasing in ! (remember that the fraction of voters who prefer A to B is increasing in !), either A

or B must have the lowest expected vote share in every state ! 2 
, while C either has the largest

expected vote share if ! 2 �
C
�
�F
�
; or the second largest, if ! 2 
n�
C

�
�F
�
:It is straightforward

to see that if, say, mag (pivBC j!) is the largest of all magnitudes, then Gi (ABjs) > Gi (Ajs), for
all i; s: This implies that all majority voters would include B in their ballot, which in turn implies

that the expected vote share of B must be larger than that of C, a contradiction. This proves that
�
C
�
�F
�
= ? if �F is an equilibrium strategy.

Step II: the same alternative must win in all states if FICE does not hold.

Let �
P
�
�F
�
denote the set of states in which P 2 fA;Bg has the largest expected vote share

under �F . We focus on the case in which �
B
�
�F
�
� 
 (B), that is B has the largest expected vote

share for some set of states in which A is actually the full information Condorcet winner. We now

show that, generically, if FICE does not hold, then �
B
�
�F
�
= 
. That is, B must always have the

largest expected vote share.

Assume �
B
�
�F
�
6= 
. Since the vote shares of A and B are continuous in ! and C cannot lead

in any state of nature (see Step I), there must exist a state !AB at the junction between �
B
�
�F
�

and �
A
�
�F
�
, where the two majority alternatives tie for �rst place. Thus, the magnitude of the

pivot probability between A and B is zero in !AB : Now, consider the following di¤erence:

Gi (Ajs)�Gi (ABjs) =
Z 1

0

q (!js) [Pr (pivAB j!) �U (AB; ij!)� Pr (pivBC j!) �U (BC; ij!)] d!:
(37)
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If mag
�
pivAB j!AB

�
= 0 > mag (pivBC j!), 8!, then this di¤erence is strictly positive for a

fraction �
�
Aj!AB

�
of the voters, who would thus actually play A as a best response to the strategy

�F . Likewise, comparing Gi (Bjs) and Gi (ABjs) shows that a fraction �
�
Bj!AB

�
would actually

play B: Since !AB 2 
 (A), we have �
�
Aj!AB

�
> �

�
Bj!AB

�
, and A must thus be the only likely

winner, a contradiction.

Thus, for B to be among the likely winners in !AB 2 
 (A) under an equilibrium strategy �F ,

it must be that max! mag (pivBC j!) = mag
�
pivAB j!AB

�
= 0. This requires that B and C tie for

�rst place in state !AB (remember that the vote share of B is weakly decreasing in !). Yet, we just

saw that, in state !AB , the vote shares of A and B must also be equal. That is, the fraction of voters

who prefer to vote A or AB must be equal to the fraction of voters who prefer to vote B or AB

and to the fraction of voters who prefer C. This distribution of preferences is clearly non-generic.

This shows that if �F is an equilibrium strategy, then 
 � �
B
�
�F
�
� 
 (B) cannot happen: either

�
B
�
�F
�
= 
(B) and there is FICE, or �
B

�
�F
�
= 
, and there is no information aggregation.

Step III: necessary condition:

Now we identify a necessary condition for �
B
�
�F
�
= 
: we prove that � (Bj�!) must be large

enough (�! is the state in which this share is lowest). The complementary case �
B
�
�F
�
= ? (such

that A leads in all states) is similar.

Since � (Aj!) > � (Bj!) when ! 2 
 (A), a large enough fraction of the voters who prefer

A to B must approve of B (i.e. play AB) to obtain �
B
�
�F
�
= 
. Likewise, a large enough

fraction of the voters who prefer B to A must be playing action B. Since the vote share of A is

weakly increasing in ! (� (Aj!) is increasing in !) and that of B weakly decreasing in !, we have:
�
B
�
�F
�
= 
 ) argmax!mag (pivAB j!) = �!. By (37) ; a necessary condition for the voters who

prefer alternative A to B in state �! to play AB instead of A is:

max
!

mag (pivBC j!) � mag (pivAB j�!) : (38)

Now, compare the value of actions B and AB:

Gi (Bjs) < Gi (ABjs)

,Z 1

0

q (!js) [�Pr (pivBAj!) �U (AB; ij!)� Pr (pivAC j!) �U (AC; ij!)] d! < 0: (39)

Clearly, none of the voters who prefer alternative A to B in state �! would ever play B: both terms

are strictly negative.

Now, concerning the voters who prefer alternative B to A in state �!:

�1�Gi (Ajs)�Gi (ABjs) is strictly negative for all of them;

�2�Gi (Bjs) � Gi (ABjs) requires that mag (pivBAj�!) � max!mag (pivAC j!) :

Thus, a necessary condition for B to have the largest vote share in all states turns out to be:

max
!

mag (pivBC j!) � mag (pivBAj�!) � max
!

mag (pivAC j!) ; (40)
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where the latter magnitude is always restricted since A and C have the lowest two expected vote

shares (see Lemma 1 in Appendix A1). This condition allows for up to 4 cases:

Case (i) max!mag (pivBC j!) = mag (pivBAj�!) = max!mag (pivAC j!) : This case is non generic
(see Step II).

Case (ii) max!mag (pivBC j!) > mag (pivBAj�!) > max!mag (pivAC j!) : In this case, all the voters
who prefer alternative A to B in state �! play AB, and all the voters who prefer alternative B to A

play B. A vote can be pivotal between B and C if:

x (B) + x (AB) 2 fx (C) ; x (C)� 1g ; and x (B) + x (AB) � x (AB) ;

where the latter condition is never binding. Thus, mag (pivBC j!) = �
�p

1� r (tC)�
p
r (tC)

�2
8! and the �rst inequality becomes:

�
�p

1� r (tC)�
p
r (tC)

�2
> �� (Bj�!) = mag (pivBAj�!) :

Rearranging terms yields the necessary condition:

� (Bj�!) > 1� 2
p
r (tC)

p
1� r (tC): (41)

To identify the condition behind the second inequality, mag (pivBAj�!) > max!mag (pivAC j!).
Knowing thatmag (pivAC j!) is restricted, it is su¢ cient to show whenmag (pivBAj�!) is unrestricted.
Since no voter plays A, a vote can only be pivotal between A and B if:

x (B) = 0, and

x (AB) � x (C) ; (42)

meaning that mag (pivBAj�!) is unrestricted i¤ � (Aj�!) > r (tC).

Case (iii) max!mag (pivBC j!) = mag (pivBAj�!) > max!mag (pivAC j!) : By the same arguments
as for Step II, this case is non-generic.

Case (iv) max!mag (pivBC j!) > mag (pivBAj�!) = max!mag (pivAC j!) : As explained in (ii) above,
the equality requires that � (Aj�!) � r (tC) : Using the fact that � (Aj�!) + � (Bj�!) + r (tC) = 1; one

can check that this inequality actually amounts to:

� (Bj�!) � 1� 2r (tC) : (43)

Since (43) implies that (41) holds, we have proven that, both in case (ii) and in case (iv), (41) must

be satis�ed for FICE to fail.

Step IV: su¢ cient condition.

This step proves that (41) is also a su¢ cient condition for a failure of FICE: from Step III, there

are two cases to consider.
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Case (a): � (Aj�!) > r (tC) : In this case, the following strategy is an equilibrium:

�i (AB) = 1, 8i s.t. �U (AB; ij�!) � 0

�i (B) = 1, 8i s.t. �U (AB; ij�!) < 0:

Indeed, for these strategies, (41) implies that (40) holds with strict inequalities, and therefore:

Gi (ABjs) > max fGi (Ajs) ; Gi (Bjs)g , 8i such that �U (AB; ij�!) � 0 and (44)

Gi (Bjs) > max fGi (Ajs) ; Gi (ABjs)g , 8i such that �U (AB; ij�!) < 0. (45)

Case (b): � (Aj�!) � r (tC) : In this case, the voters who prefer alternative B to A in state �! may

take either of two actions: B or AB. Let 
� (Bj�!) denote the fraction of the electorate who plays
B in state �!. There exists �
 � 1�2r(tC)

�(Bj�!) (> 0) such that if 
 < �
; then the expected vote share of

A is strictly larger than that of C, and hence: mag (pivBAj�!) > max!mag (pivAC j!) : This implies
that (45) holds for any 
 < �
. Therefore, the fraction of voters who play B is bounded below by

�
� (Bj�!). For that lower bound, we have:

mag (pivBC j!) = 2
p
r (tC)

p
1� r (tC)� 1 > ��
� (Bj�!) = mag (pivBAj�!) ;

which implies (44), and hence that no voter wants to play A. B is then the only likely winner for

any ! 2 
.
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