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Summary It is hypothesised that focal interictal epileptiform discharges (IED) may exert a
deleterious effect on behaviour and cognition in children. This hypothesis is supported by the
abnormally high prevalence of IED in several developmental disorders, like specific language
impairment, and of cognitive and behavioural deficits in epileptic children after excluding con-
founding factors such as underlying structural brain lesions, drug effects, or the occurrence
of frequent or prolonged epileptic seizures. Neurophysiological and functional neuroimaging
evidence suggests that IED may impact cognition through either transient effects on brain pro-
cessing mechanisms, or through more long-lasting effects leading to prolonged inhibition of
brain areas distant from but connected with the epileptic focus (i.e. remote inhibition effect).
Sustained IED may also impair sleep-related learning consolidation processes. Nowadays, the
Sleep;
Plasticity

benefits of anti-epileptic treatment aimed at reducing IED are not established except in specific
situations like epileptic encephalopathies with continuous spike and waves during slow-wave
sleep. Well-designed pharmacological studies are still necessary to address this issue.
© 2011 Published by Elsevier Masson SAS.
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Résumé Il existe un faisceau d’arguments en faveur du concept selon lequel les décharges
épileptiformes intercritiques (DEI) focales peuvent exercer un effet délétère sur le compor-
tement et la cognition chez l’enfant. Ces arguments sont, d’une part, la prévalence élevée
de DEI dans certaines pathologies du développement, comme la dysphasie développementale,
et, d’autre part, la prévalence élevée de déficits cognitifs et de troubles du comportement
chez les enfants épileptiques après exclusion de facteurs confondants comme une lésion struc-
turelle cérébrale sous-jacente, un effet médicamenteux, ou la survenue de crises épileptiques
fréquentes ou prolongées. Les données neurophysiologiques et de neuro-imagerie fonctionnelle
suggèrent que les DEI peuvent inhiber certains processus cognitifs cérébraux de façon très tran-
sitoire mais également de façon prolongée. Ces effets prolongés des DEI consistent notamment
en une inhibition de régions cérébrales distantes connectées au foyer épileptique et en une
altération de la consolidation des apprentissages au cours du sommeil. Le bénéfice d’un traite-
ment médicamenteux visant à réduire les DEI n’est actuellement pas établi sauf dans certaines
situations particulières comme l’encéphalopathie épileptique avec pointe-ondes continues du
sommeil. Cette question doit être abordée par la réalisation d’études médicamenteuses bien
conduites.
© 2011 Publié par Elsevier Masson SAS.
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deleterious impact of focal interictal epileptiform dis-
harges (IED) on behaviour and cognition in children
as been presumed for a long time. This hypothesis of
ED-induced cognitive and behavioural deficit is mostly sup-
orted by two sets of studies.

First, the prevalence of focal IED in the electroen-
ephalogram (EEG) of cohorts of non-epileptic children with
evelopmental disorders of behaviour or cognition has been
eported significantly higher than the 3 to 6% prevalence
bserved in two main normative paediatric studies [7,22].
tudies performed in children with specific language impair-
ent reported an incidence of IED during sleep ranging from

0 to 80% [20,21,43]. In children with an attention-deficit
yperactivity disorder, studies reported an IED incidence
anging from 6% on wake EEG [27,50] to more than 50%
hen sleep EEG was recorded [59]. However, it should be
ept in mind that the two aforementioned normative stud-
es were performed during a 20-minute wake period [7,22].
ata on the incidence of IED in long-term EEG including sleep
ecordings are scarce in normal children. Although it may
e hypothesised that IED incidence would be higher in these
onditions than in a mere short-term wake session, this pre-
iction was not verified by Picard et al. who found an IED
ncidence of 5% during sleep in a group of 20 normal children
43].

Second, several studies aimed at identifying a possible
ontribution of IED to cognitive and behavioural problems
ventually found in epileptic children. The difficulty in this
ituation is to segregate the effects of IED from the effects
f other confounding variables, such as the underlying aeti-
logy (genetic predisposition versus structural or metabolic
rain lesion), the repetition of overt seizures, and the use of
nti-epileptic drugs (AED). Still, a prospective study aimed
t evaluating the contribution of these various factors on
europsychological results collected within 3 months of the

rst recognized seizure identified the presence of IED on EEG
s a risk factor for cognitive deficit [23]. The impact of IED on
ehaviour and cognition is particularly interesting to study in

s
a
s

he context of idiopathic focal epilepsies for several reasons.
irst, these epilepsies expressed only during a particular
eriod of the life span are not associated with any structural
rain lesion. Second, seizures are usually infrequent and of
rief duration, making the use of AED often unnecessary.
hird, children with focal idiopathic epilepsy usually have
ery frequent IED in their EEG, still present in the awake
tate but more abundant during non-rapid eye movements
NREM) sleep. Three forms of focal idiopathic (genetic)
pilepsy have been recognized by the International League
gainst Epilepsy (ILAE) in the now quite old classification
f epileptic syndromes: benign epilepsy with centrotem-
oral spikes (BECTS), also called rolandic epilepsy, benign
hildhood epilepsy with occipital paroxysms (BCEOP), and
eading epilepsy [11]. The term ‘‘benign’’ here refers to
he fact that patients usually have a favourable outcome,
ot only for seizures but also for behaviour and cognition.
owever, a substantial number of BECTS children present
eterogeneous cognitive deficits affecting language and
emory functions that are associated with the intensity of

nterictal spiking and evolve to recovery with EEG normal-
zation [5,18,35,37,39]. This suggests that these deficits are
ssociated with the presence of IED. Since the publication
f the ILAE classification of epileptic syndromes in 1989, it
as appeared that a subgroup of focal idiopathic epilepsy
volves to epileptic encephalopathies (EE) with continu-
us spike and waves during slow-wave sleep (CSWS). This
pileptic syndrome associates severe global or task-specific
ognitive regressions with almost continuous and diffuse IED
uring slow-wave sleep but also other stages of NREM sleep
stages 1 and 2). Some CSWS cases are symptomatic of a
ocal brain lesion. The existence of an idiopathic subgroup is
upported by reported cases with normal cerebral magnetic
esonance imaging (MRI) showing evolution from BECTS to EE
ith CSWS, by transitory cases so-called ‘‘atypical rolandic
pilepsy’’, and by the possible coexistence of EE with CSWS
nd BECTS within the same family [13,24,53,63,67]. This

uggests that BECTS and EE with CSWS are at the edges of
spectrum where the most frequent and diffuse IED during

low-wave sleep result in the more severe behavioural and
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cognitive deficits. The impact of IED on cognitive deficits is
recognized in EE with CSWS as normalization of sleep EEG
with drugs, particularly corticosteroids, results in consider-
able cognitive improvements [2,9].

Despite this literature supporting a negative impact of
IED on behaviour and cognition, controlled-studies designed
to evaluate the effect of an AED aimed to reduce IED are
still lacking. Only one randomized placebo-controlled study
showed that treatment of IED can improve behaviour in
epileptic children [46]. As the use of AED is also an indepen-
dent risk factor for cognitive deficits in epileptic children
[23], AED are primary prescribed to prevent seizure recur-
rences and not to treat IED, except in special situations like
EE with CSWS. A better understanding of the pathophysiol-
ogy of IED-induced cognitive deficits is thus crucial. In this
respect, two non-exclusive hypotheses are proposed. The
first account hypothesises that each IED will induce a tran-
sient inhibition of brain networks. The second hypothesis
proposes more long-lasting effects of IED on brain function-
ing and plasticity. These two hypotheses will be discussed in
the following sections.

Transient effects of interictal epileptiform
discharges

Interictal spikes may produce transient cognitive effects
identified behaviourally using sophisticated neuropsycholog-
ical evaluation under EEG control. This phenomenon is called
transient cognitive impairment (TCI) and was first described
by Aarts et al. in 1984 [1]. Epileptic patients underwent
verbal and visuo-spatial tasks under EEG control, and asso-
ciation of error with IED defined TCI. These authors found
TCI in about 50% of patients, and an association between IED
laterality and the type of task, errors on verbal task being
associated with left-sided IED and on nonverbal task with
right-sided IED. Shewmon and Erwin studied the temporal
profile of IED-related transient effects by measuring reac-
tion times after presentation of visual stimuli in two patients
with abundant posterior focal spike-waves, and showed that
this effect started 100—200 ms before the spike to end with
the termination of the slow-wave [58]. Because the maxi-
mal intensity of the dysfunction occurred around the middle
of the slow-wave and correlated with the size of the slow-
wave but not with the spike, these authors hypothesised
that TCI was not merely related to the inhibition of the
cortical region that generated the spike but also by sur-
rounding connected areas that generated the after-coming
slow-wave. Transient decrease in neuronal activity recorded
from cortex surrounding an epileptic focus was confirmed
using optical imaging in an animal model of focal IED [56].
However, further behavioural studies aimed to identify TCI
in focal epilepsies failed to replicate this TCI phenomenon
in a large majority of patients [3]. Given these results,
Seri et al. hypothesised that the low sensitivity of neu-
ropsychological tasks to demonstrate an altered response
concomitant to the occurrence of a focal IED could be due
to the very short duration of IED and to the large distribu-

tion of neural networks involved in neuropsychological tasks.
They therefore proposed to search for altered evoked neu-
rophysiological responses triggered by IED [57]. Using this
methodology, these authors found a significant effect of
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ocal IED on auditory evoked responses in six patients with
cquired auditory agnosia and IED, i.e. Landau-Kleffner syn-
rome (LKS), suggesting a direct effect of IED on auditory
ortical functioning [57]. More recently, the combination of
EG and functional magnetic resonance imaging (fMRI) has
een used to characterise the metabolic correlates of IED.
EG-fMRI takes advantage of the blood oxygen level depen-
ent (BOLD) effect to identify haemodynamic changes in
he brain correlated with pathological EEG activity, with a
emporal resolution on the order of the second [26]. Stud-
es performed in adults with temporal lobe epilepsy have
hown that focal IED are associated with complex haemody-
amic changes [31]. If activation is usually seen within the
pileptic focus, deactivation may also occur. Moreover, acti-
ation and deactivation may be seen in remote cortical and
ub-cortical structures, suggesting an effect of IED on dis-
ant synaptically connected regions. The neurophysiological
orrelates of deactivations seen on EEG-fMRI are still debat-
ble. Indeed, deactivation could be related to a GABAergic
nhibition requiring little energy and leading to reduced
ction-potential activity, but also to a deafferentation lead-
ng to reduced synaptic activity [31]. EEG-fMRI performed
n a child with CSWS disclosed a combination of activation
n the presumed epileptogenic zone, and extensive deac-
ivation in lateral and medial frontoparietal cortices and
osterior cingulate gyrus, that was interpreted as reflecting
n impact of IED on normal brain function leading to neu-
opsychological regression [14]. Analyses performed at the
roup level in adults with temporal lobe epilepsy [33] and
n children with CSWS [60] also favoured this hypothesis,
howing significant deactivation in several regions partic-
pating to the default mode network (precuneus, medial
rontal, and temporoparietal cortices). The default mode
etwork is composed by connected brain structures that are
ctive when normal subjects are at rest and deactivated
hen they engage in a task [47]. Thus, IED-related inhibi-

ion of the default mode network would lead to a decrease
n awareness.

In conclusion, several studies have shown that IED
ay have transient consequences on brain functioning

hat may be evidenced behaviourally or using evoked
otentials and EEG-fMRI. IED could result in cognitive
eficits in sustaining functionally inappropriate synap-
ic cortico-cortical arrangements in a critical period
or development of associative cortices, as hypothesised
y Morrell et al. [38]. However, considering the dif-
culties to clinically identify TCI, it remains difficult
o conceive that it is only through the repetition of
ransient time-locked effects that IED contribute to sus-
ained cognitive deficits, suggesting further long-lasting
ffects.

ong-lasting effects of interictal epileptiform
ischarges on brain functioning and plasticity

ositron emission tomography (PET) using [18F]-
uorodeoxyglucose (FDG) is routinely used in the context
f presurgical evaluation of refractory focal epilepsy:

ost patients show focal hypometabolism that frequently
xtends beyond the epileptogenic zone and is mainly
elated to both neuronal loss and deafferentation [19]. In
hildren with idiopathic focal epilepsy, FDG-PET provides a
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ay to study long-lasting effects of IED on brain functioning
t rest. Indeed, the absence of a cerebral lesion precludes
ocal hypometabolism as a consequence of neuronal loss.
oreover, as the temporal resolution of FDG-PET is very

ow when compared with EEG-fMRI, episodic focal inter-
ctal spikes are not expected to produce any significant
etabolic changes. Accordingly, investigations performed

n children with typical BECTS when awake in the interictal
tate did not reveal any significant regional change in cere-
ral glucose metabolism [66]. At variance, most cases of
hildren having EE with CSWS and normal MRI, when inves-
igated in the same conditions with comparable amount
f IED during PET acquisition than BECTS patients, showed
eeply abnormal patterns of regional glucose metabolism
12]. As the main differences between these two groups
f patients were the presence of CSWS patterns during
he night that preceded PET scanning and the acquired
ognitive or behavioural deficits, it was hypothesised that
etabolic changes could be related to abundant IED during

leep, eventually disclosing brain regions both involved in
pileptic activity and cognitive deficits. In this respect,
ne abnormal metabolic pattern was an association of
egional hypermetabolism in the epileptogenic zone with
ypometabolism in distinct, remote brain areas. At the
roup level, those patients showed centroparietal hyperme-
abolism and prefrontal hypometabolism. This finding was
nterpreted as a phenomenon of remote inhibition of the
refrontal hypometabolic regions by highly epileptogenic
nd hypermetabolic posterior cortex. This hypothesis was
upported by effective connectivity analyses that demon-
trated the existence of significant changes in the metabolic
elationship between these brain areas in this group of chil-
ren compared to a control group. Based on these results,
e proposed that in EE with CSWS, the cortical regions
oncerned by intense interictal spiking during sleep remain
ypermetabolic at the awake state and inhibit remotely
onnected brain areas. According to the concept of remote
nhibition, cognitive deficits are related to dysfunction
f both hypermetabolism at the site of the epileptic foci
nd hypometabolism in distant and connected brain areas
12,15,16]. Normalization of the regional metabolism and
ffective connectivity changes after regression of the CSWS
attern using drugs provided further evidence that the
ntense epileptic activity occurring in NREM stages of sleep
n those patients impacted on brain functioning during the
wake state [15].

It has also been hypothesised that the abundant IED dur-
ng NREM sleep in EE with CSWS could interfere with the
leep-dependent physiological processes of neuronal plas-
icity supporting memory consolidation for recently learned
nformation [10,29,64]. Memory consolidation refers to a
ynamic longitudinal time-dependent process converting
abile memory traces into more permanent and/or enhanced
orms [36]. These transformations are made possible by
rain plasticity, i.e. the capacity of the brain to modify its
tructure and function over time [32]. Studies performed
n adults suggest that both REM and NREM sleep stages
articipate to memory consolidation. Whereas some stud-

es suggest that the different stages of sleep are involved
n the consolidation of specific memory systems, with
onsolidation of declarative memory mainly occurring dur-
ng slow-wave sleep and of procedural memories during REM
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leep, other studies suggest that adequate succession of all
tages of sleep is mandatory for some memories to con-
olidate [44,61,68]. In children, it has been demonstrated
hat sleep also plays an important role in the consolidation
f declarative memory, but its effect on the consolida-
ion of procedural memories is less clear [4,45,69]. Besides
leep-dependent consolidation, recent animal and human
ata also indicate that post-training awake periods also may
chieve the necessary conditions to consolidate novel mem-
ries in the nervous system [8,30,42,51], cognition- and
onsolidation-related cerebral activity being additionally
odulated by complex interactions between circadian and
omeostatic regulatory processes [17,52,54,55]. In healthy
dults, neuroimaging studies have shown delayed reac-
ivation of learning-related activity during post-training
leep [41,48] and awake [42] periods, followed by transfer
rom early hippocampal activity toward delayed prefrontal
25,62] and basal ganglia [40,49] activity days to months
ater. At the cellular level, early reactivation during sleep
f the cortical regions involved in a specific task learned
hen awake could be expressed by an increase of synap-

ic strength [28] and by bursts of gamma oscillations [34].
n epileptic patients, memory consolidation has not been
xtensively studied. A study performed in adult epileptic
atients showed that those patients with a left tempo-
al epileptic focus have impaired long-term retention for
verbal memory task despite normal learning and short-

erm retention levels [6]. In childhood idiopathic focal
pilepsies, we addressed recently the question of sleep-
elated declarative memory consolidation in studying four
pileptic children (one case of BECTS, one case of benign
hildhood epilepsy with occipital paroxysms, and two cases
f EE with CSWS) and an age-matched control group
sing a sleep-dependent word-pairs learning task [65]. In
atients, but not in healthy controls, recall performance
ignificantly decreased overnight, suggesting impairment in
leep-related declarative memory consolidation. Hydrocor-
isone treatment in one patient with EE with CSWS resulted
n normalization of the sleep EEG together with normaliza-
ion of overnight memory performance, which was not the
ase in the other EE/CSWS patient whose sleep EEG was only
artially improved. These preliminary results therefore sug-
est that IED in idiopathic focal epilepsies may disrupt the
rain processes underlying sleep-related memory consoli-
ation, a hypothesis that should be supported by further
tudies.

onclusions

here has been increasing evidence for an impact of IED
n behaviour and cognition over the last decade. How-
ver, many questions concerning the pathophysiology and
reatment of IED-induced deficits remain unanswered. In
articular, the risk-to-benefit ratio of treating patients with
drug aimed at reducing IED still remains unknown in most

linical situations. Well-designed pharmacological studies
re warranted to address these crucial questions.
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