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Titre: Tests de Rangs pour les Modéles Graphiques Elliptiques
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Abstract: As a reaction to the restrictive Gaussian assumptions teaisually part of graphical models, Vogel and
Fried [17] recently introducedlliptical graphical modelsin which the vector of variables at hand is assumed to have
an elliptical distribution. The present work introducedass of rank tests in the context of elliptical graphical misd
The proposed tests are valid under any elliptical densitg, ia particular do not require any moment assumption.
They achieve local and asymptotic optimality under cotyespecified densities. Their asymptotic properties are
investigated both under the null and under sequences dfdtteenatives. Asymptotic relative efficiencies with resp

to the corresponding pseudo-Gaussian competitors areederivhich allows to show that, when based on normal
scores, the proposed rank tests uniformly dominate thedps@aussian tests in the Pitman sense. The asymptotic
results are confirmed through a Monte-Carlo study.

Résumé :En réaction aux hypothéses gaussiennes restrictives qoimgagnent le plus souvent les modeéles gra-
phiques, Vogel et Fried [17] ont récemment introduit des éhesl graphiques elliptiques, qui prévoient que les va-
riables suivent conjointement une distribution ellipglie présent travail introduit une classe de tests de reangs d

le contexte de ces modeéles graphiques elliptiqgues. Cesgest valides sous une densité elliptique quelconque, et
en particulier ne requiérent aucune hypothése de momsergoiit localement et asymptotiquement optimaux sous
des densités correctement spécifiées. Leurs propriétégpasyjgues sont étudiées a la fois sous I'’hypothése nulle et
sous des suites de contre hypotheses locales. Leurs gfficasymptotiques relatives par rapport a leurs compgtiteu
pseudo-gaussiens sont calculées, ce qui permet de mongrdorsqu’ils sont basés sur des scores gaussiens, kes test
de rangs proposés dominent uniformément les tests pseudsigns au sens de Pitman. Les résultats asymptotiques
sont confirmés par une étude de Monte-Carlo.

Keywords:Conditional independence, Graphical models, Local asgtigphormality, Pseudo-Gaussian tests, Rank
tests, Scatter matrix, Signhed ranks
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1. Introduction

Graphical modeling is one of the main tools that allow to uatéad the network of linear de-
pendencies in a collection of random variabigs. . . , Xk. It has many applications, especially in
biometrics, where it is used to study gene association mksyeee, e.g., [12, 13] and [16]. Clas-
sically, graphical modeling produces a graphn which thek vertices are associated with the
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2 D. Paindaveine and Th. Verdebout

random variables at hand and (undirected) edges indicat¢hih corresponding pair of variables
are not conditionally independent (conditional on the riging k — 2 remaining variables).

Standard graphical modeling is based on the assumptioiX taatXy, . .., Xk)’ is multinormal.
Conditional independence betweépandX, then is equivalent t6S g, ) js = 0, whereZ, stands
for the covariance matrix of. This implies that determining the edges that should beqia®
can be achieved by considering null hypotheses of the form

I (zgol\/)jf =0 or Jp: (z(?olv)jlfl == (ZEOJ\-/)jpép =0, (1)

which therefore are of primary importance in graphical nliode As often in multivariate anal-
ysis, the daily-practice tests are the corresponding (Sanislikelihood ratio tests (LRTS).

Of course, multinormality is a very strong assumption, ieateldom compatible with real
data. In the recent paper [17], Vogel and Fried introdueligtical graphical modelsthat only
impose that the distribution of is elliptically symmetric. In that context, non-gausstgrim-
plies that conditional independence is replaced with darhl uncorrelatedness, while the pos-
sible lack of finite second-order moments requires subbistifua scatter matrixparametek (see
Section 2.1 below for a precise definition) for the covareamgatrix Z..,. In that framework,
Vogel and Fried defined robustified Gaussian LRTs that remalicl—in the sense that they
asymptotically meet the level constraint—under a broadeaof elliptical densities. More pre-
cisely, their tests, that are based on quadratic forms instimators. of £, remain valid under
any elliptical distribution at whichmvec(i—):) is asymptotically normal with mean zero and
a covariance matrix that can be consistently estimated framsample. Choosing an adequate
robust estimator& then yields tests that do not require any moment assumgtiowever, to
obtain a pseudo-Gaussian test (that is, a test that is rtadsviations from multinormality, yet
is asymptotically equivalent to Gaussian LRTs in the moltinal case), one has to use the empir-
ical covariance matrix faf, which leads to pseudo-Gaussian tests that require finitghf@rder
moments.

The main objective of the present paper is to provide a clagssts that achieve local and
asymptotic optimality under any fixedrget density, yet remain valid under arbitrary elliptical
densities, in the absence of any moment assumption. Thegedgests, that arise from invari-
ance arguments, are based on the same multivariate sigmardegdas in [4, 5] and [7]. Denoting
by X1,...,Xn an observea-tuple ofk-dimensional elliptical vectors with locaticdhand scatter
matrix 2, these signs and ranks are (sample versions of)

1. thestandardized spatial signs

_ TYXi-9)
IZ"Y2(Xi - 0)|

Ui: , i=1...,n,

(throughoutAl/2, for a symmetric and positive definite mati stands for the symmetric
and positive definite root ok) and

2. theMahalanobis ranks 2, i = 1,...,n, whereR"™ denotes the rank df£~/%(X; — 8)||
among|Z (X1 - 0)],.... [E*(Xn— B)]].
Of particular interest within the proposed class of rankstés thevan der Waerden-that is,
normal-score—test, that (i) is asymptotically equivalent, under Gaaissilensities, to the cor-
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Rank Tests for Elliptical Graphical Modeling 3

responding Gaussian LRTs, and (ii) uniformly dominateghim Pitman sense, the locally and
asymptotically optimal pseudo-Gaussian test.

The outline of the paper is as follows. In Section 2, we inic&the notation and parametriza-
tion to be used in the sequel (Section 2.1) and exploitthieorm local asymptotic normalitgf
the parametric submodels considered (Section 2.2) to bptichal parametric tests (Section 2.3).
In Section 3, we turn the Gaussian version of these parasmesis into pseudo-Gaussian tests,
that remain valid under any elliptical distribution with ife fourth-order moments. The rank
tests we introduce in Section 4 are validity-robust in thessethat they remain valid under arbi-
trary elliptical densities, without any moment assumptibiney are also efficiency-robust, as we
show by deriving asymptotic relative efficiencies (Sectoh) and by conducting a Monte-Carlo
study (Section 5.2). Finally, the Appendix collects tecahiproofs.

2. Parametrization, ULAN, and optimal parametric tests

In this section, we describe the parametrization of edligdtfamilies that will be relevant for
graphical modeling and we state the corresponding unifocal lasymptotic normality (ULAN)
result, that is the key result in the construction of optiteals in the context.

2.1. Parametrization

We throughout assume that tke&limensional observations(1”>, .. ,X,@ are elliptically symmet-
ric. More precisely, defining

F={0:Rf > R" : 14 < 0},

wherepy g == [5°r'g(r)dr, and
1
Fri={meF (herg) [ M landr=1/2},

we assume that tkvéi(”) 's are mutually independent with a common probability dignisinction
of the form

X 1 Cy g, (detZ) ~Y2gy <\/ (x—0)YZ 1(x— e)> : 2)

for somek-dimensional vectof (location), some symmetric and positive definitie x k) ma-
trix X (scatte), and somey; € .#; (standardized radial density This latter terminology is jus-
tified by the fact that the Mahalanobis distandg®,%) := ((X; — 8)'Z1(X; — 0))Y/? are i.i.d.
with probability density functiorr — Gk (r) := (uk_lgl)*lrk*lgl(r)I[r>0], wherelg stands for
the indicator function of the s&. In the sequel, the corresponding cumulative distributiorc-
tion will be denoted a&k(r) = fg Gik(s) ds

Special instances are thevariate multinormal distribution, with radial densigy(r) = @ (r) :=
exp(—akr?/2), thek-variate Student distributions, with radial densitiesr (foc R/ degrees of
freedom)gy(r) = f} ,(r) := (1+acyr?/v)~*"¥)/2, and thek-variate power-exponential distri-
butions, with radial densities of the forga(r) = f7, (r) := exp(—bx r2h), n € R¢; the positive
constantsy, ax, andby , are such thag; € .71.
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4 D. Paindaveine and Th. Verdebout

Since graphical modeling is basedDr, it is natural to replace the parametrizatiorféhZ, g; )
with a parametrization it(]G,Z‘l, 01). Actually, we will further factoriz&€ into

T l=c®W, with tr(W)=k, (3)

since the classical testing problems in graphical modgefvagallel to those associated with (1),
are problems for whichV is the parameter of interest, whit@ plays the role of a nuisance. The
factorization in (3) mimics the decomposition of the saattatrixZ = o2V into a shape param-
eterV (with tracek, say) and a scale parametef, that has proved useful in many inference
problems involving the shape of elliptical distributiorsge, e.g., [4, 5, 6] and [7].

To sum up, the parametrization of elliptical families welwinsider in the context of graph-
ical modeling involves, beyond the infinite-dimensionadigh density parametay; € %1, the
finite-dimensional parameter

& =(0',¢? (vechW)') € @ := R* x R§ x vech(.%),

where. % stands for the set df x k symmetric and positive definite matrices with tradcand
where vechA) := (A1, (vechA))" € RMK (with K := k(k+1)/2— 1) denotes the vector stack-
ing the upper-triangular elements of the mathix(the upper left entry ofV may be dropped
from & since it can be obtained from the other entrie¥\bby using the fact thaiV has trace).

In the sequel, we will write ?2}1 or Pg‘)cz W.ar for the joint distribution of the mutually indepen-
n

dent random vector)%i(l ,...,X,@ with common pdf

X g, C<(detW)Y/2g, (c\/(x —0)W(x—8) ) , (4)

which is the pdf in (2) written in terms of the new parametiima. The semiparametric model
considered for elliptical graphical modeling is then assted with the family of probability
distributions

P = Ugie 7 @g(l;]) = Uge7 Usco {P,(fn)gl} )

As mentioned in the Introduction, the derivation of optimat some fixedy; = fi—tests
for graphical modeling will be based on the ULAN property bé tcorresponding parametric

submodel7|” .

2.2. ULAN

As usual, ULAN requires some mild regularity conditions anMore precisely, we need here
that f; belongs to the collection#, of all absolutely continuous densities i, for which,
denoting byf; the a.e. derivative of; and lettinggs, := — f1/f1, the integrals

1 - 1 ~
i) ::/0 62 (Nfu(r)dr and _gi(fy) ::/0 122 (r) e (r) dr )

exist and are finite. The quantitie&(f1) and_#( f1) play the roles ofadial Fisher information
for location andradial Fisher information for shape/scaleespectively. Slightly less stringent
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Rank Tests for Elliptical Graphical Modeling 5

assumptions, involving derivatives in the sense of distiiims, can be found in [5], where we
refer to for details.

Stating the ULAN result relevant for elliptical graphicabdels requires introducing some fur-
ther notation. Denoting bg, the ¢th vector of the canonical basis BF, let K := zi‘fj:l(aefj)®
(ej€l) be thek? x k? commutation matrixput Ji := (vecl)(vecly)’, and writeA®? for the Kro-
necker produch @ A. Finally, letM be theK x k? matrix such thaM f((véch w) = vecw for any
symmetrick x k matrixw satisfying t{w) = 0. Applying Lemma A.1 from [7] to Proposition 2.1
of [5] then yields the following result.

Theorem 2.1. For any & € .7, the family 2" = {P]"}, : & = (6/,¢2 (vechW)')’ € @} is
ULAN, withcentral sequence ’

M) _ (A A (ny
Afvfl o (Afvfl;l’Af7f1;2’Afvf1;3> ’

where (letting d= d;(8,W) := ((X; — 8)W(X; — 8))¥/? and U; = U;(8,W) := W¥?(X; —
6)/d)

¢ & CZ n
A= Zld’fl(cd') WL Bt g 2 (G4 9n(d) K,
l —
and )
~1/2

and full-rankinformation matrix

Mg O /0
Fe g = 0 Tenm Meqa |

O rf,f1;32 rf,f1;33

where

szk f
Mg 1= 7k( 1)W>

C4 f1) — k2 C2 f1) — k2 -
Fg ty00= (/k(41) ), Mg f30= (/k;kl) )Mk(vecW 1),

and

1 on-1/2 [ k(1) o1/
Fe raa =g M(W™) [k(k+2) (he + Kk + k) — | (WS 7M.

More precisely, for ang " = & + O(n~%/2) and any bounded sequent® € R<K+1 we have

that, as n— o underP(Tz,) ,
&V

) 1
log (olpg“m)+n - /dpggg).fl) = (r(n))/Ag:n).fl —5(") e T +0p(1)

&
andAEm)’fl — J1/|<+K+1(0ar£,f1)-
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6 D. Paindaveine and Th. Verdebout

The block-diagonal structure of the information maffix;, as usual implies that the unspeci-
fication of @ has no asymptotic cost when performing inference®and/orW. In contrast, the
non-zero asymptotic covariankg ¢, .3, between the2- andW-parts of the central sequence en-
tails that the unspecification gf will have an asymptotic cost when performing inferencé/én
In such a situation, asymptotic inference should be basdédeofh -efficient central sequence

*(n) . Ax(n) . n) 1 )
quf]_ —Az,fl,?) L Az~flx3_rE7f1'32rE7f1,22Azqf1’2 (7)
_ 1 @2\ —1/2 0 - . . 1
_ _2\/ﬁMk(W ) i; Cdl¢f1(Cd|)VeC(U,U| _EI")’

)

fyr is asymptotically normal with mean zero and covarianceimat

which, under If,p
. . -1
E.fl = r§.f1;33 = rE,f1;33_ rf,f1;32r£,fl;22r/£.fl;32

A(f1) 22\ ~1/2 2 ©2\~1/2p
r(k+2)|v|k(w )7 he - Ki— di| (W) M

=1 _(f1)Gr(W); (8)

throughout this paper, inference will be ab®t which allows to make the notation a bit lighter
by dropping the indices 3 and 33 in efficient central sequeacel information matrices, respec-
tively.

2.3. Optimal parametric tests

We focus on the problem of testiigear restrictionson W, which covers most testing problems
of interest in graphical modeling. More precisely, we cdesia generic problem of the form

. (vechW) € . (Y) (N vech(%)) : 7 & € Oo(Y)
{ 44 (vechW) ¢ 42(Y) (1 veeh( %) (eq”'va'e”“y { & ¢ oY) ) ®)

whereY'is a given (arbitraryK x (K —r) matrix with full rankK —r, and where# (Y) stands
for the vector space that is spanned by the columné. &fnder the nullW satisfies a set af
independent linear constraints. Note that the null hys®blen (1)—when formulated in terms
of the scatter matri¥—are of this form : for instance, the null hypothes# : (271)12 =0and
Hy: (7112 = (Z71)13=0—equivalently, /% : (W)12 =0 and.s% : (W)12 = (W)13 = 0—are
respectively associated with

Y= ( Orx(c-1) > and Y=L2n:=1 2% < P2 )
|K—1 IK—2

whereL (K2’3) is theK x K permutation matrix that exchanges the second and third tiffd. More
generally, this class of testing problems allows to test #mgy fixed collection of off-diagonal
entries ofW is only made of zeroes.
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Rank Tests for Elliptical Graphical Modeling 7

It follows from [11] that, when considering the testing pleh in (9) at asymptotic levet, the
locally and asymptoticallyf;-optimal testgs ;, —more precisely, the locally and asymptotically

most stringent test in@lﬂf)—rejects the null whenever

Qe = @5 [(Tg) - YT 7Y (10)
N /k](-fl) (Af(fi) [(Gk(W))* = YIY'G(W)Y) Y] A z fl > Xf1as

wherexrz;lfa denotes thex-upper quantile of the chi-square distribution witdegrees of free-
dom. Of courseg remains unspecified under the null, hence should be replaitedin appro-
priate estimato€, which leads to the statistQy, and to the tesgx,, say. While this test achieves
(local and asymptotic) optimality &, it is of rather limited practical value since it is usually
not valid underg; # fi—in the sense that, undgg # f1, its asymptotic size is nat under the
null.

3. Pseudo-Gaussian tests

In view of the central role played by multinormal densitingiassical multivariate analysis, the
Gaussian version of the tests defined above, nagpehyith f1 = ¢, is of particular interest. As
already mentioned, however, this test is of limited pratti@lue since it is valid under multinor-
mal densities only—or more precisely, as we will show, urelliptical densities with Gaussian
kurtosis only. Now, it turns out that it is possible to extehd validity of this Gaussian test to
the whole class of elliptical densities with finite fourthrder moments, while maintaining its
optimality properties at the multinormal. This section de§ and studies the resulting so-called
pseudo-Gaussiatests.

As, e.g., in[1, 2] or [3], we define tHeurtosisof the elliptical density in (4) as

k B9
k+2 DZ(g1)

Kk(01) = -1,

with

Du(g1) 1= % (=g [CFOW)] ) and Ed(gy) = 0 (=Egg[c'al(O.W)] );
—1,01 —4LUl

this clealry requires thag; € Jl ={01 € 71 lki3g <}, thatis, the elliptical distributions
considered need to have finite fourth-order moments. FosSan densitiesEx (@) = k(k +
2)/a2, Dx(@n) = k/ak, which leads ta (@) = 0. Positive (resp., negative) kurtosis valu®&g; )
would therefore indicate tails that are heavier (resphtéig than in the multinormal case.
Robustifying Gaussian tests into pseudo-Gaussian oneimeqnvestigating the asymptotic

behavior of the Gaussian efficient central sequﬁi&% LettlngS =isn . (Xi—0)(Xi—8),
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8 D. Paindaveine and Th. Verdebout

first note that this central sequence, at the multinormalrites

12 & 1
A Ay 1/ZZd-2 Ui — I 11
£o 2\ (W) = PYee T Tk )
_akCZ\/ﬁ

1 _
My {I 2 — = (VecZeoy) (Ve o) } vec(S( )) L akG Tg ;:COV

2 k

whereZX,, denotes the common covariance matrix ofXas. The asymptotic properties Aﬁf”) ,
under any elliptical density with finite fourth-order montgrare given in the following result.

Lemma3.1.Fix & = (0',¢2,(vechW)') €@, g; € F = 3}‘1(4) N.%,, and a bounded sequence
™ = (1MW), s, (vechw™)")" in Rk+K+1 sych thatvechw := limp,_., vechw(" exists. Then,

(n)
underP&n,l/zr(n)’gl,

*(n) £ LT
Beg = MkMergTeg):
wherepty”, = ay(k+2)Dk(g1)Gk(W) (vechw) andl ;% = afEi(g1)Gk(W); for 1™ =0, the

claim actually only requires that;ge J( ),

In view of the Gaussianf{ = ¢,) version of (10), Lemma 3.1 leads to considering the pseudo-
Gaussian test "statistic"

Ry = ) (M) YT YA 12
1 n
= FE e Gin) [GW) VY GWIY) YA
C4

= Eig o) [(GW) ™ = YIYGUW)Y) Y] TGy

which, by using the fact thdco, = Dk (01)Z = %Dk(gl)W*l, rewrites as

2
By = e (1) [(GuEd) - VY GUEA) Y| TEL,,
_ 1 (n —1y\\— - (n)
" KA o) oz (G VY CEe )Y [ Tz,

In practice, adequate estimataﬁsandicov need to be substituted férandZ.,y, respectively.
The following result allows to control the impact of this stibution.

Lemma3.2.Fixé e©andg € 3}‘1(4), and assume thaﬁ and ﬁco\, are root-n consistent fo@
andZcoy underng)l. Then, lettingicoy 1= k& /tr (Soov),

Tn

g; ~Toy., = —(k+2) (tr Zoh) Gy(Zoa) v/ vech(Weoy — W) + 0p(1),

asn— o underPén> .
;01
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Rank Tests for Elliptical Graphical Modeling 9

As shown in the proof of Theorem 3.1 below, it follows from Lexa 3.2 that the replace-
ment of@ andZ.,, with root-n consistent estimatoi® andZ.q, will havAe no effect on the null
asymptotic behavior o@?{  In probability, provided that the estimatRg,y is constrained—in

the sense that the correspondifg,, satisfies the null constraint in (9). Such an estimate can of

course be obtained by projecting a preliminary estimatgy on the null constraint, that is by

replacingX o, with
A Kk .
2cov0 = =1 Wcolv;o>
tr (zCOV)

wherewcov;o is the statistic with values ir¥i defined through

1
tr (ZCOV)

Clearly, rootn consistency oﬁcov will entail root-n consistency oﬁcov;o under the null. The
resulting pseudo-Gaussian tesp say—rejects the null at asymptotic levelwhenever

1
k(k+2)(1+ Kk)

(VeOCh WCOV,O) = Y(Y’Y)_lY{ VeOCh <L i;;\-/) .

a1 .\ _ a1 _
Qu = (ng)icov;o)/ (Gk(zcov;o)) 1_Y(YIGk(zcov;0)Y) lY’} T(érj)icov;o > sz;lfaa
h I :L; n X'—é/iil X_é 2 1lcn X._é/i71 X_é 2_lf
Wnere K : k+2(n Z:l(( [ ) cov;O( I )) )/(n Z:l( [ ) cov;O( l )) , Tor
anyg; € 7Y, consistently estimates(g1) underufeeom{ngl}. The following result sum-
marizes the asymptotic properties@j..

Theorem 3.1. (i) UnderUg g,y U

degrees of freedom;
(ii) underPanfl/ztm) o witht(™ as in Lemma 3.1 € Oy(Y),and g € T Q 4 is asymp-
totically non-central chi-square with r degrees of freedand non-centrality parameter

k(k+2)
1+ Kk(01)

e {ngl}’ Q 4 is asymptotically chi-square with r

(vechw)’ [Gk(W) — Gi(W)Y(Y'G(W)Y) ~2Y'Gy(W)] (vechw);

n) 3.
P )

ane,? { 01
(iv) @ is locally and asymptotically most stringent, still at aptotic levela, for Ugcgy)

(iif) @4 has asymptotic levet underUg g,y U

(n) i i (n)
Ugleﬂ{“) {P&gl} against alternatives of the formg g, v) {Pg. (pl}.

Wrapping up, we defined in this section a pseudo-Gaussiap jefor 7. This test achieves
local asymptotic optimality in the multinormal case and aéms valid under any elliptical density
with finite fourth-order moments.

4. Rank tests

In the previous section, pseudo-Gaussian test statiséos @btained by building quadratic forms
in the Gaussian efficient central sequenAé%(z. Distribution-freeness there was achieved by
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10 D. Paindaveine and Th. Verdebout

estimating the asymptotic covariance matrix of this cdérgemuence at the underlying radial
densityg;, which required estimating the kurtosig(g; ) of ;.

Another, more elegant, way of eliminating the nuisaggés to exploit the strong invariance
structure of the model considered. For any fixed valuégs afidW, the corresponding submodel

n ._ ()
L@e.W — UCG]RS’ Ugleﬂl {P97C27W7gl}

is indeed invariant under the groﬂ@ﬂ}v = {ggfz,c - h e },. of continuous monotone radial
transformations of the form '

G (X1, Xn) = Gn(8+dWY2Uy,.... 8 +dWY2Up)

= (9 + h(dl)Wil/zulv oo 79 + h(dn)Wil/ZUn%

where thed, = d;j(8,W)’s and theU; = U;(6,W)’s are the quantities involved in Theorem 2.1,
and where#” denotes the collection of the mappirfgsR+t— R+ that are continuous, monotone
increasing and satisfly(0) =0 and lim_,. h(z) = . This group actually is a generating group

for 32‘(9 W which implies that invariant statistics are distributivae in 32( . This is what leads
to conS|der|ng signed rank tests (below, we simply speakk testy, smce invariant statistics
are exactly those that are measurable with respect to

(Us,...,Un, R R,

whereRi(”) = Ri(”)(G,W) denotes the rank al amongd,...,d,; see [5] for details.
The rank tests we will propose will be based on linear rantssizs of the form

(n
s _ 1 2212 ¢ (R w1
A g =5 MW ile<n+1>Vec(U'U' k).

where thescore function K (0,1) — R is continuous and square-integrable, and can be written
as the difference of two monotone increasing functions. &sitna 4.1(i) below shows) 2(2,
under Ié”gl is asymptotically equivalent in probability to

A =) G et 1)

In particular, A E(K) , With Kfl( ) i= Fpt(u) ¢, (Fit(u)) for all u, is a rank-based version of the

efficient central sequendrz in (7), hence can serve as the basis for the constructiontiofialp
(at f1) rank tests.

The asymptotic behavior oA 2(2 is described in the following result.

Lemma 4.1. Fix & = (0',¢?, (vechW)') € @ and (" as in Lemma 3.1. Then,

(i) (asymptotic representationinder If>n ,withgs € 1, A E(r,l) Azgé(”) +0.2(1) asn — co.
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Rank Tests for Elliptical Graphical Modeling 11

(if) (asymptotic normalitylinder énln—l/Zr(n) o With g1 € Fa, Azgﬂ((”) is asymptotically normal
with mean ' ’
M s =Tk (vechw) i= _#i(K, g1)Gk(W)(vechw)

and covariance matrix

£x = J(K)Gk(W), (13)
where_7k(K,g1) == Jo K(U)Kg, (u)duand_#i(K) == [3 K2(u)du;
(iii) (asymptotic linearitylinder Fg‘)gl withg, € Za, A ETZ],MTM —A ?2 =-T zgé (vechw(™)

+0p(1) asn — .

Mimicking the form of the optimal parametric test in (10), wensider the rank tespk that
rejects the null in (9) at asymptotic levelwhenever

Qk = 92<”)7K > X1 as
where
Qex = (AW [0t -Yvrniy] ay (14)
1 *(N)\/ — — *(Nn
= i (AE (G Y G W) Y] AR

and where(é(n)) is an adequate sequence of estimatoi&. dflore precisely, we will assume the
following.

Assumption (A). The sequence of estimatoé(?)) is
(A1) constrainedfor anyn € No, & € Op(Y) andg; € Z,, Pé”gl [2(n) € OO(Y)] =1;

(A2) /n-consistent under the nulfor any & € ©y(Y) andg; € Fa, ﬁ(é(n) - &) =0p(2)
asn — oo, under Ifg“él;
(A3) locally asymptotically discreteor all & € ©y(Y) and allc > 0, there existd = M(c) > 0

such that the number of possible valuesZo? in balls of the form{t: n¥/2|t — &|| <c} is
bounded by, uniformly asn — oo,

Among the many possible estimatafrswe propose the estimator

A

§ = (8,¢% (vechWo)) (15)
= (8,2 Y(Y'Y) Y (vechW))’

(note thatc? does not appear IQ ¢ x, hence does not need to be estimated), wBaardW, as
in [8], are defined through

12 12 1
- ZlUi(B,W) =0, - ZlUi(G,W)Ui’(B,W) =l and (W) =k
i= i=
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12 D. Paindaveine and Th. Verdebout

The estimatof in (15)—or more precisely, the resulting sequence of e$tima§ w)—satisfies
Assumptions (A1)-(A2). After appropriate discretizatignwvould also satisfy Assumption (A3).
In practical situations, however, whenes fixed, this discretization is superfluous, as one may
always assume thdtis part of a locally and asymptotically discrete sequenaestifnators; see,
e.g., [5, 7] or [9] for a discussion.

The following theorem, which states the asymptotic prapsitf the rank tespy, is the main
result of this paper.

Theorem 4.1. Let Assumption (A) hold. Then,
(1) underUgcoyv) Ugiez, {ngl}’ Qk is asymptotically chi-square with r degrees of free-
dom;
(i) underP!" ) g, With T as in Lemma 3.1§ € ©y(Y), and g € Fa, Qk is asymp-

E+n-1/21(),
totically non-central chi-square with r degrees of freedand non-centrality parameter

2
K o Y
% (vechw)' [Gk(W) — Gk(W)Y(Y'Gk(W)Y) 1Y G(W)] (vechw);

k
(iif) @k has asymptotic levet underUg cq,y) Ug e 7, {ng;l}-
(iv) Pk, is locally and asymptotically most stringent, still at agpotic levela, for Ugecao(y)

Ugre 7. {ngl} against alternatives of the form ¢@0(Y){P£,'j>fl}.

This result confirms that the proposed rank tests do not gy moment condition, as
they are valid (and distribution-free) under ampy< .#,. When based on the optimal score func-
tion Ky, , they also achieve local and asymptotic optimaltfsatn particular, the van der Waerden
(normal-score) rank tespyaw = @Ky (see Section 5.2 for details) is locally and asymptotically

optimal in the Gaussian case.

5. Asymptotic relatives efficiencies and simulations

In this section, we compare, through asymptotic relatifieiehcies (AREs) and simulations, the
pseudo-Gaussian tests from Section 3 and the rank-bassedrtes Section 4.

5.1. AREs

The results of both previous sections allow to compute imagitforward way the asymptotic
relative efficiencies of the proposed rank tegis with respect to their pseudo-Gaussian com-
petitors@ . These AREs indeed are simply obtained by dividing the remtrality parameter

in Theorem 4.1 by the one in Theorem 3.1.

Theorem 5.1. The asymptotic relative efficiency of the rank teptswith respect to the pseudo-

Gaussian testg -, under standardized radial density (g 9‘54)), is

2
AR, (91 /01) = 9 FT. (16
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Rank Tests for Elliptical Graphical Modeling 13

Unlike their pseudo-Gaussian competitors, the proposadtests do not require finite fourth-
order moments. If the underlying elliptical density hasriité fourth-order moments, the AREs
of our rank tests with respect to pseudo-Gaussian testsheegfore be considered infinite. This
implies that the assumption thgt € ﬁé“) is not restrictive in Theorem 5.1.

The AREs in (16) coincide with the ones obtained in [5], in¢hbatext of testing sphericity of
the underlying elliptical distribution. As a direct coraty, the Chernoff-Savage result of [14] ap-
plies in the present context, and shows that the AREs of thggsed van der Waerden tegfqw
with respect to the pseudo-Gaussian tests are uniforngeddhan or equal to one, with equality
under multinormal densities only.

Numerical values of these AREs are provided in Table 1, fdoua rank tests that are defined
in Section 5.2 below. Further ARE values will be provided wipgesenting simulations results
in Table 2.

5.2. Simulations

Simulations were conducted as follows. We generatedl, 500 mutually independent samples
of i.i.d. trivariate K = 3) random vectorg,;, ¢ =1, 2, 3, 4,i = 1,...,n = 200 with spherical
Gaussiang;), ts (&2;), t5 (€3;), andty (€4;) densities, respectively. Eaefp; was successively
transformed into

XZ;i;r; = (CZ(WO"i'Wr]))il/zE[f;i» (= 17 27 37 47 I = 17 N N= 07 17 27 37 (17)

with
1/2 1/4 0 0 0 n/i0
¢?:=2 Wo:=| 1/4 1/2 1/2 | ,andwy:=| O 0 O
0 1/2 2 n/10 0 0

The valuen = 0 corresponds to the null hypothesi& : W13 = 0, while the valueg) =1,2,3
provide increasingly severe alternatives.
We performed the pseudo-Gaussian ggstand various rank-based tegpg, all at asymptotic

level o = 5%. The rank-based tests considered are

— the van der Waerden (normal-score) tggtw(= QKQ), that uses

Ko =W u) and _Z(@)=kk+2),

whereW, stands for the(lf distribution function;
— thet,-score testspy,, for v =1,5,8, which are based on

k(k+ v)G; L(u)
Kfi”(u):v%—k—q;;(u) and _#(fL,) =

k(k+2)(k+ V)
k+v+2 7

whereGy, denotes the Fisher-Snedecor distribution function Wiéimdv degrees of free-

dom;
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14 D. Paindaveine and Th. Verdebout

— the sign testfgs(m, Wilcoxon testggv(\?), and Spearman tegls(??, that are obtained for

Ka(u):=u* and _#(Ka) =1/(2a+1),

with a=0,a=1 anda = 2, respectively;

Table 2, which reports the corresponding rejection fregiesn confirms our asymptotic re-
sults. The pseudo-Gaussian tgst meets the level constraint under Gausstargndts distri-
butions, but not under thig (that has infinite fourth-order moments). In contrast, #uekrtests
always meet the nominal asymptotic level constraint. Oedpie relatively small sample size
(n= 200), the rankings based on empirical powers and AREs agne®s$t cases. In particular,
under all Student distributions considered, the optimaiit the rank tests based on correctly
specified densities is confirmed (van der Waerden testsioosty require larger sample sizes to
show agreement with asymptotic results).

6. Appendix

PrROOF OFLEMMA 3.2. In this proof, all stochastic convergences ara asco under If;”él for

the values € © andg; € 9’1(4) fixed in the statement of the Lemma.
First note that, sincévecZqy,)' (VecZeoy) = tr(lx) =k, Tos,,, = ng:mv rewrites

n 1
Teszcov = — % M k |:I k2 - E (Veczcov) (Veczcoj\-/)/:| VeC(S(en) - ZCOV) . (18)

DecomposingS‘%n> —Seovinto iV 4tV — (" wheret!” := Sg” — sy = op(n2/2), " =

SV — Zeov = Op(n"42), andt” 1= oy — Zcov = Op(n~Y/2), (18) and the continuous mapping
theorem yield

N[,

1 c a1 &
My {I @~ 1 (VeZeou) (veczcov)’] vec(Sg') —Zcov)

[«»}}
M

Ccov

n 1 ~
= Te’zcov + % M k |:| k2 - E (VeCZCO\/) (Veczco]\-/)/:| Vec(zcov - zcov) + Op(l)

By using first the delta method, then the identities(#®C ) = (C' ® A)(vecB) andK (vecA) =
vec(A’), this entails that

n 1 _ a1 o
Té.ﬁmv - TO.ZCOV = - % My [l k2 — E (VGCZCOV) (VGCZCO{,)/] (Z?OZV)VGC(ZCOV - zcolv) + OP(l)

n 1 a—1 _
= - % M k(zc®02v) 1/2 [I k2 — E‘]k] (zc®02v) 1/2\/ec(zc0v - zcolv) + OP(l)

n 1
= M) (SR Ve S, — Sak) + 00D,
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Rank Tests for Elliptical Graphical Modeling 15

where we letHy 1= l2 + Ky — —Jk Clearly, Wy iS @ rootn consistent estimator fow =

k=21 /tr (222). Recalling thaB,, — 22 is Op(n—%/2), the continuous mapping theorem then
yields

NG
o 0% = — M K(Zea) P H(Z5)

[«»})
™M>

xvec((tr B 5ol Wooy + (tr 5o (wcov—w>) T op()

n _
= (B o)) (i) P (22 A veaw)
Y 1 5 MU(SE2) MV Hu(552) Y e Wooy — W) -+ 00(D).

Note thatH(£52)Y2(vedW) = HivedZehiWEch) = kHi(vecly) /tr (Eqd) = 0. This and the
definition of M (note thatWcoy — W has trace zero) finally provides

Té7icov - TeszOV = \4/.k_ (tr zCOV) M k(zgoz\/) 1/2H (ZC®02V) 1/2M VeCh (WCOV W) + OP(l)
= —(k+2) (tr Zegy) Gi(Zoon) v vech(W o, — W) +0p(1),
which establishes the result. O

PROOF OFTHEOREM 3.1. (i) Fix& = (0',¢?, (vechW)')’ € @(Y) andg; € Jl( ). By construc-
tion, (vechW o) takes its values inZ(Y), so that Lemma 3.2 implies that
Té,imv - T97zcov = _(k+ 2) (tr z(?O:I\./) Gk(zgoj\-/)\/_ VeOCh(WCOV'O - W) + Op(l)
= (k+ 2) (tr zcov) Gk( cov) (YIY) lY\/_ VeCh(WCOV 0o—W)+ OP(]-)

asn — oo under Fg‘)gl This entails that

[(Gk(zcov)) ~Y(Y'Gk(= cov)Y)ilY(] (Té,f:m\, - Tevzcov) = op(1), (19)

still asn — co under If'n> Jointly with the consistency df« and the continuity of the mapping

A — Gy(A), this ylelds thaQ// le — 0p(1) asn — oo under FQ” . Equality (12), tha™ =0
version of Lemma 3.1, and the |dempotence of

*Q *01 \—1 *g —1
B:=M% (M)t -vYr® v}

then yields (see., e.g., Theorem 9.2.1 in [15]) Qat, under Ifﬁ , Is asymptotically chi-square
with

tr(B) = tr(1k — (T )VY(YT & )Y )Y2) =K = (K-1) =1 (20)
degrees of freedom.
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16 D. Paindaveine and Th. Verdebout

(i) Assume now thag, € .7\ and fix a sequence™ as in Lemma 3.1. From contiguity,

Qy — Q?{/V is alsoop(1) asn — o under é”ln 20 g Applylng again Theorem 9.2.1 in [15]

and using Lemma 3.1 now shows ti@t,, still under Fﬁ; y2pin g , Is indeed asymptotically
non-central chi-square withdegrees of freedom and non- centrallty parameter

() () T

2
= (k+2)? Ek((g )) (vechw)' [Gk(W) — Gi(W)Y(Y'G(W)Y) 2Y'G(W)] (vechw)
_ % (vechw)' [Gk(W) — Gi(W)Y(Y'G(W)Y) 2Y'G(W)] (vechw).

(ii)-(iv) Part (iii) of the result directly follows from tkb asymptotic null distribution given in
Part (i) and the classical Helly-Bray theorem. As for Patf}, {he asymptotic equivalencg , —

Q??W = 0p(1) under If;”él shows that, in the multinormal cage = @, Q 4 is asymptotically
_equivalent in probability t@i,"f = Qg ¢: the local asymptotic thimality rgsult in_ Part (iv) then
is a consequence of the weak convergence of local expesnteraussian shifts (see, e.g.,
Section 11.9 of [11]). O

PROOF OF THEOREM 4.1. (i) Fix & = (8',¢?, (vechW)') € © andg; € Z,. Lemma 4.1
in [10] allows to replace the deterministic perturbatibf in Lemma 4.1(iii) with/n(§ — &),
which yields

A AR = T veen(WE) —w) +op(1)
K o a
- _L}(k (;(9)1) [; v/ vech(WyY — W) + op(1) (21)

Applying the continuous mapping theorem, using (21) inwoction with
en applying Lemma 4.1(i), entails that

asn — oo, under I?)g
Assumption (Al), th

Qk = (AW [0 Ym0y a5 +op(1)

= (A [0 =YY 0] AR +oe(1)

= @) [0 =YY 0N Y] 4357 + 0p(2) (22)

asn — oo, under I{g“él The result then follows again from Theorem 9.2.1 in [15], using

(the T = 0 version of) Lemma 4.1(ii) and the fact thB§  [(F; )" — Y(YT;  Y) 1Y is
idempotent with trace (the trace can be computed as in (20)).

(i) From contiguity, (22) also holds undetﬁ’n g g0 SO that the same result from [15],

via Lemma 4.1(ii), now yields thaQ g, under these local alternatives, indeed is asymptotically
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Rank Tests for Elliptical Graphical Modeling 17

non-central chi-square withdegrees of freedom and non-centrality parameter
(%) [T =Yg o0 2y

= %(Véﬁhw)/ [Gk(W) — Gk(W)Y(Y'Gk(W)Y)—lY/Gk(W)] (VeOChW),

(ii)-(iv) Part (iii) directly follows from the asymptoticwll distribution given in Part (i) and
the classical Helly-Bray theorem. As for Part (iv), notetttiree K = Ky, version of (22) shows
that Q 1, andQy s, in (10) are asymptotically equivalent in probability undeandardized radial
density f1; as in the proof of Theorem 3.1, the local asymptotic optityaif Ok, is then a
consequence of the weak convergence of local experime@aussian shifts. O
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18 D. Paindaveine and Th. Verdebout

degrees of freedom of the underlyingensity

test k lv<4d v=5 v=8 v=15 v=20 v—> oo
2 400 2204 1215 1.047 1.025 1.00p
3 400 2270 1.233 1.052 1.028 1.00p
Quaw | 4 | +o 2326 1249 1.057 1.031 1.000
N 6 400 2413 1275 1.066 1.036 1.00D
10| 4o 2531 1.312 1.080 1.045 1.000
2 40 2331 1248 1.045 1.013 0.957
3 400 2398 1.267 1.052 1.018 0.95y
Pt 4 | 4o 2453 1.284 1.058 1.023 0.958
6 40 2537 1311 1.070 1.031 0.959
10| 4o 2.646 1.349 1.087 1.044 0.963
2 40 1500 0.750 0.591 0.563 0.50p
3 40 1800 0.900 0.709 0.675 0.60D
Qs 4 | 4 2.000 (1.000 0.788 0.750 0.66}
N 6 400 2250 (1.125 0.886 0.844 0.75D
10| 4o 2500 1.250 0.985 0.938 0.833
2 400 2258 1174 0956 0.919 0.844
3 400 2386 1.246 1.022 0.985 0.918
ow 4 | 4o 2432 1.273 1.048 1.012 0.94%
N 6 400 2451 1283 1.060 1.026 0.969
10| 4o 2426 1.264 1.045 1.013 0.970

TABLE 1. AREs, with respect to the pseudo-Gaussian tgstsof the van der Waerderp(qw), tv (with v = 6),
sign (¢'s), and Wilcoxon @w) rank tests@k, under k-dimensional Student € 4, v = 5, 8, 15, and 20 degrees of
freedom) and normal densities, respectively, fer R, 3,4, 6, and 10.

Soumis au Journal de la Société Frangaise de Statistique
File: paper.tex, compiled with jsfds, version : 2009/12/09
date: December 1, 2011



Rank Tests for Elliptical Graphical Modeling 19

test [ g1 [n=0 n=1 n=2 n=3]ARE(-/@y)
0 0513 .2500 .7893 .9940  1.0000
Pvaw 0500 .2487 .7713 .9920  1.0000
0 0633 .2533 .7753 .9907 .9714
@ | ¥ | 0647 2487 7660 .9867  .9460
o, 0600 .2253 .6867 .9667  .7824
?s 0527 .1893 5747 .9200  .6000
ow 0653 .2413 .7533 .9833  .9130
Psp 0567 .2500 .7640 .9887  .9568
0y 0433 .1933 6220 .950f 1.0000
Pvaw 0453 2207 .6880 .9713 1.2329
0 0487 2247 7140 9767 1.2692
@ | tg | .0487 2227 7180 9747 1.2637
o 0567 .1967 .6887 .9560 1.1319
?s 0567 .1773 5767 .9100  .9000
ow 0500 .2180 .7147 .9740 1.2464
Psp 0487 2227 6967 .9727 1.2249
o0y 0500 .1453 4887 .8373 1.0000
Puaw 0507 .2200 .6747 .966Q 2.2705
0 0447 2493 7020 .9760 2.3895
Or 0453 2540 .7120 .9753  2.4000
@, | ts | 0473 2373 6793 9613 2.2244
?s 0540 .1860 .5827 .9140  1.8000
ow 0473 2500 .7100 .9767 2.3858
Psp 0507 .2300 .6780 .9727 2.2766
o0y 0233 .0307 .0293 .0627 -
Puaw 0467 1340 5247 8787 oo
0 0520 .1580 5787 .918) oo
@ | 4 |.0527 1640 5913 9227  +oo
o 0513  .1727 .6420 .9407 4o
?s 0513 .1667 .5893 .9153 4o
ow 0507 .1667 .5993 .9260 4o
Psp 0553 .1413 5207 .8740 4o

TABLE 2. Rejection frequencies (out of N 1, 500replications), under the null{ = 0) and increasingly severe
alternatives ) = 1,2,3; see Subsection 5.2 for details), of the pseudo-Gauss&iipte, and the van der Waerden
(@vaw), tv (v =8, 5, 1), sign (ps), Wilcoxon (pw), and Spearmangsp) rank tests. Sample size is=n200. All

tests were based on asymptotic 5% critical values. The tasnmn provides numerical computations of the AREs
in (5.1).
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