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Abstract: We investigate the physics of quantum imaging withN > 2
entangled photons in position space. It is shown that, in paraxial approxima-
tion, the space-time propagation of the quantum state can bedescribed by
a generalized Huygens-Fresnel principle for theN-photon wave function.
The formalism allows the initial conditions to be set on multiple reference
planes, which is very convenient to describe the generationof multiple
photon pairs in separate thin crystals. Applications involving state shaping
and spatial entanglement swapping are developed.
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1. Introduction

In the recent years, there has been a growing interest in producing quantum states of light in
which more than two photons are entangled. So far, up to six time-entangled photons have been
produced through entanglement swapping [1] and photon triplets start being produced through
cascaded nonlinear processes [2] or photon number post-selection in a single parametric process
[3]. Multi-photon interferometry techniques have been developed to demonstrate the hyper-
entanglement of a large number of qubits [4] as well as phase super-sensitivity [5, 6] (for a
recent revue onN-photon entanglement and interferometry see [7]).Spatialentanglement [8] is
particularly interesting for quantum information processing and communication because large
Hilbert spaces can be easily manipulated using passive masks or active spatial light modulator
[9–14]. It can also be used to improve imaging resolution (quantum super-resolution imaging,
quantum lithography) [15, 16] and produce distributed or “ghost” images [17–19]. Schemes
to realise spatialN-photon entanglement (withN > 2) have been proposed [20, 21]. One can
foresee that the manipulation of spatial entanglement of few-photon states of light [22–25] will
become an important research field in the forthcoming decade.

In this work, we investigate the physics of quantum imaging with N > 2 entangled photons.
We describe the quantum state of the electromagnetic field using a N-particle wave function
in positionrepresentation. Position representation is preferred to momentum representation be-
cause photon-position is what is actually detected by the photon-counters in a quantum optics
experiment. However, in many experiments on spatial entanglement that have been performed
so far, photons are generated by spontaneous parametric down-conversion in a nonlinear crys-
tal and detected in the crystal far-field; in this particularcase, people usually prefer working
in momentum representation of the photon state since the position correlations in the far-field
mimic the momentum correlations in the nonlinear crystal plane. In the case of an arbitrary
optical system (made of lenses, mirror, masks, beam splitters, ...) between the crystal plane and
the detection region, the use of the momentum representation for the field in the crystal plane
will involve mixed propagatorsg(k,r j), wherer j are the positions of the photon-counters and
k wave vectors [22,23]. Such propagators arise because the photons generated through nonlin-
ear interactions are first regarded as populating an ensemble of plane-wave modes (momentum
representation). Then, when it comes to calculate the jointdetection probabilities at some se-
lected positions, the local interference of all these modes(that is the position representation)
is calculated. Instead, if position representation is chosen from the beginning, the propagators
have the usual and intuitive point-to-point formh(r,r j). For applications of the photon position
representation to quantum imaging problems with bi-photons (N = 2), see [11,12].

Application of standard Fourier optics techniques to the position representation wave func-
tion shows that the propagation ofN photons through an optical system can be described by a
generalized Huygens-Fresnel principle. This has been firstnoticed for biphoton states produced
by parametric down-conversion in nonlinear crystals [26–28]. Our generalization toN-photon
states brings new interesting features: (i) it introduces time in the diffraction integral (giving
a space-time picture of entanglement propagation), (ii) itshows how to deal with interferom-
eters in the photon path, and most importantly (iii) the formalism applies to quantum systems
made of an arbitrary number of photons, possibly emitted by sources that are located indiffer-
ent transverse planesΣ j . To our best knowledge, this last situation has never been considered



before in the context of quantum imaging despite its practical importance (see the generation
scheme in [1], for instance).

The article is organized as follows. In Sec. 2, we review the foundations of the position wave
function representation of light. Then, we turn to paraxialapproximation, derive the general-
ized Huygens-Fresnel principle (Sec. 3) and discuss the connection between the photon wave
function and photodetection probabilities (Sec. 4). Finally, in Sec. 5 and 6, we apply the general
formalism to specific examples. The example of Sec. 5 shows how an initial 3-photon position
entanglement can be used to shape a 2-photon wave function through the detection of the third
photon. In Sec. 6, we analyse an entanglement-swapping scheme acting on a pair of bi-photons
produced in two different nonlinear crystals: combining the detection of two photons with wave
front shaping of remaining two photons, entangled images can be created.

2. Photon wave functions in position representation

Thepositionwave function of a photon is defined as the projection of the state vector on local-
ized particle states (the eigenstates of the photon position operator̂r) [29]. The very existence
of such an operator for photons and the problem of photon localization has been a long standing
debate that received a satisfying solution only recently. The existence of a proper photon posi-
tion operator̂r that has commuting Hermitian Cartesian components satisfying [r̂k, p̂l ] = ih̄δkl

(p̂ being the photon momentum) has been proven [29, 30]. The eigenfunctions ofr̂ are trans-
verse waves that can be interpreted as localized-photon states [31]. Any admissible single-
photon wave function is obtained as a linear combination of these localized states.N-photon
wave functions are symmetric elements of the tensor productof N single-particle Hilbert spaces.
However, the definition of the position operatorr̂ is not unique. Therefore, there is more than
one way to assign a position wave function to a single photon.The most popular one is probably
the so-called Bialynicki-Birula-Sipe wave function̄ψ(r, t) = [ψψψ+(r, t) ψψψ−(r, t)] which has two
vector components corresponding to photons with positive and negative helicity [32,33]. Each
vector component has a Fourier expansion that reads

ψψψ±(r, t) =
∫

d3k
√

h̄kce±(k) f±(k)
ei(k·r−kc t)

(2π)3/2
, (1)

where k = |k| and e±(k) are the unit circular polarization vectors for photons propa-
gating in thek-direction. Normalization is such that the complex coefficients f± satisfy
∑h=±

∫

d3k | fh(k)|2 = 1. This wave function transforms as an elementary object under Lorentz
transformation and can be easily connected to Maxwell fields. In this work, we write the wave
function is a slightly different (but equivalent) way that consists in summing both helicity com-
ponents together:

ΨΨΨ(r, t) = ψψψ+(r, t)+ψψψ−(r, t). (2)

This provides a vector representation instead of the bi-vector one [34]. Sinceψψψ+ andψψψ− are
orthogonally polarized, they never mix: ifΨΨΨ is given,ψψψ+ andψψψ− can be deduced. Therefore
the information content in the vector functionΨΨΨ is the same as in the bi-vector field̄ψ.

Replacing the complex coefficientsf±(k) by annihilation operators ˆa±(k) in Eq. (1), the
fundamental photon field is found to be proportional to thepositive frequencypart of the electric
field:

Ψ̂ΨΨ(r, t) = ∑
h=±

∫

d3k
√

h̄kceh(k) âh(k)
ei(k·r−kc t)

(2π)3/2
=−i

√

2ε0 Ê(+)(r, t).

Note that Ψ̂ΨΨ ∝ Ê(+) holds information aboutboth electric and magnetic field. Therefore,
it provides a complete information about electromagnetic configuration. To show this ex-
plicitly, one decomposeŝΨΨΨ again into its helicity componentŝψψψ+ and ψ̂ψψ− and subtract



them: this yieldsB̂(+) =
√

µ0/2(ψ̂ψψ+ − ψ̂ψψ−), the positive frequency part of the magnetic
field. In the second quantization formalism, the state of a single-photon wave packet writes:
|Ψ〉 = ∑h=±

∫

d3k fh(k) |1k,h〉, where |1k,h〉 = a†
h(k)|0〉 and f±(k) are the same spectral

amplitudes that appear in Eq. (1). The connection between the first and second quantiza-
tion formalism is given by the relationΨΨΨ(r, t) = 〈0|Ψ̂ΨΨ(r, t)|Ψ〉 = −i

√
2ε0 〈0|Ê(+)(r, t)|Ψ〉.

Since 〈Φ|Ψ̂ΨΨ(r, t)|Ψ〉 = 0 for all |Φ〉 6= |0〉, we haveΨ∗
i′(q

′)Ψi(q) = 〈Ψ|Ψ̂†
i′(q

′)Ψ̂i(q)|Ψ〉 =
2ε0〈Ê(−)

i′ (q′)Ê(+)
i (q)〉 for any pair of pointsq = (r, t) and q′ = (r′, t ′), where the indexes

(i, i′)∈ {x,y,z}2 represent Cartesian components. This relates the Bialynicki-Birula-Sipe wave-
function to the usual first-order correlation functions of coherence theory. Therefore, in the con-
text of first-order perturbation theory and dipole moment interaction with matter,|ΨΨΨ(r, t)|2 is
proportional to the photon absorption (detection) probability at pointr at timet (see Sec. 4). In
addition,

∫

|ΨΨΨ(r, t)|2d3r = 〈Ψ|Ĥ|Ψ〉 is the expectation value of the photon energy [32–34]. As a
consequence,|ΨΨΨ(r, t)|2 can also be interpreted as a spatial density of electromagnetic energy at
time t. Strictly speaking, one cannot interpret|ΨΨΨ(r, t)|2 in terms of photon probability density
in position space despite it is a measure of photon energy localization [32–35].

The generalization toN-photon states

|Ψ〉= ∑
h1,...,hN

∫

d3k1 . . .
∫

d3kN fh1,...,hN(k1, . . . ,kN)|1k1,h1, . . . ,1kN,hN〉

is straightforward. The connection between wave functionsand fields is given by

Ψi1...iN(q1, . . . ,qN) = (−i)N(2ε0)
N/2〈0|Ê(+)

iN
(qN) . . . Ê

(+)
i1

(q1)|Ψ〉 (3)

and

Ψ∗
i′1...i

′
N
(q′1, . . . ,q

′
N)Ψi1...iN(q1, . . . ,qN) = (2ε0)

N 〈Ê(−)

i′1
(q′1) . . . Ê

(−)

i′N
(q′N)Ê

(+)
iN

(qN) . . . Ê
(+)
i1

(q1)〉.
(4)

Eq. (4) shows thatany field correlation function of aN-photon system can be com-
puted as a product of two tensor elements of theN-photon wave function. As in the one
particle case, theN-photon wave-function can be interpreted in terms of photodetection.
∑i1,...,iN |Ψi1,...,iN(q1, . . . ,qN)|2 is proportional to the joint probability of detecting the photons
at space-time points(q1, . . . ,qN).

It should be noted that the multi-particle wave functions constructed in this section are differ-
ent from those that are constructed from the bi-vector formψ̄(r, t) = [ψψψ+(r, t) ψψψ−(r, t)] of the
Bialynicki-Birula-Sipe wave function [36,37]. The later cannot be directly interpreted in terms
of N-photon detection amplitude because they contain a magnetic part to which electric dipole
detectors are insensitive. However, since in paraxial approximation the magnetic field carries
the same energy as the electric field, the square of both wave functions are proportional. There-
fore, joint photo-detection probabilities calculated from vector and bi-vector wave functions are
identical.

In [36], it has been shown that the bi-vector form of a Bialynicki-Birula-Sipe wave function
satisfies a Maxwell-Dirac differential equation whatever the number of photonsN in the sys-
tem. This equation can be used to study the photon propagation in vacuum, in (not dispersive,
possibly inhomogeneous) dielectrics, and at interfaces. It is well suited to study propagation
in waveguides or in scattering media such as a turbulent atmosphere as demonstrated in [36].
However, to study the propagation ofN photons through a table-top optical setup made of
masks, lenses, mirrors and beam-splitter, an integral approach similar to the Huygens-Fresnel
principle in coherent optics is more suitable. Such an integral formulation is paraxial and ne-
glects all boundary conditions (in particular reflections at the interfaces of optical elements),



except a set of reference surfaces (usually planes) on whichthe field values must be specified.
We derive such a formulation in the next section.

3. Generalized Huygens-Fresnel principle

We first consider free-space propagation. We make the simplifying assumption that we deal
with paraxial states of light, in which case polarization does not change much during propa-
gation. Therefore, we drop the polarization-related indexes. Considering photons propagating
along thez-axis, we use the Huygens-Fresnel principle [38] to expressÊ(+) at some point as a
function of its values on a reference planeΣ j at z-coordinateζ j ,

Ê(+)(r, t) =
1

2πc

∫∫

Σ j

d2ρ⊥
j

d
dt Ê

(+)(ρρρ j , t −
|r−ρρρ j |

c )

|r−ρρρ j |
, (5)

and inject this in Eq. (3):

Ψ(r1, t1, . . . ,rN, tN) =
1

(2πc)N

∫∫

Σ1

d2ρ⊥
1 . . .

∫∫

ΣN

d2ρ⊥
N

d
dt1

· · · d
dtN

Ψ(ρρρ1, t1−
|r1−ρρρ1|

c , . . . ,ρρρN, tN − |rN−ρρρN|
c )

|r1−ρρρ1| · · · |rN −ρρρN|
. (6)

Note that, in principle, up toN different reference surfaces can be appear in Eq. (6) – one
per occurrence of thêE(+)-field in Eq. (3). For indistinguishable photons, these boundary
conditions must be properly symmetrized to leave the wave function unchanged under parti-
cle exchange. We call Eq. (6) the generalized Huygens-Fresnel (GHF) principle forN-photon
wave functions. In Eqs. (5) and (6),ρρρ j = (ξ j ,η j ,ζ j) ( j ∈ {1, . . . ,N}) are points in theζ j -plane

andρρρ⊥
j = (ξ j ,η j ) are their transverse components. In the optical domain, photons are usu-

ally quasi-monochromatic. Therefore, the wave function can be writtenΨ(r1, t1, . . . ,rN, tN) =
a(r1, t1, . . . ,rN, tN)exp(−i2πc( t1

λ1
+ · · ·+ tN

λN
)), wherea(r1, t1, . . . ,rN, tN) is a slowly varying

function of time andλ j ( j ∈ {1, . . . ,N}) are the central wavelengths of the photons. Note that
nothing prevents photons from having the same central wavelength or even being indistinguish-
able. Inserting that anzats in Eq. (6) and taking into account thata(r1, t1, . . . ,rN, tN) is slowly
varying in time, one obtains

a(r1, t1, . . . ,rN, tN) =
(−i)N

λ1 . . .λN

∫∫

Σ1

d2ρ⊥
1 . . .

∫∫

ΣN

d2ρ⊥
N

e
i 2π

λ1
|r1−ρρρ1|

|r1−ρρρ1|
. . .

e
i 2π

λN
|rN−ρρρN|

|rN −ρρρN|

×a(ρρρ1, t1−
|r1−ρρρ1|

c
, . . . ,ρρρN, tN − |rN −ρρρN|

c
). (7)

If propagation fromρρρ i to ri is through an optical system, the free space propagator

hf s(ri ,ρρρ i) =
−i
λi

exp
(

i 2π
λi
|ri −ρρρ i |

)

|ri −ρρρ i |
(8)

must be replaced by the appropriate onehi(ri ,ρρρ i), which can be computed using standard
Fourier optics techniques [38]. With this generalization,Eq. (7) becomes

a(r1, t1, . . . ,rN, tN) =
∫∫

Σ1

d2ρ⊥
1 . . .

∫∫

ΣN

d2ρ⊥
N h1(r1,ρρρ1) . . .hN(rN,ρρρN)

a(ρρρ1, t1−
l(r1,ρρρ1)

c
, . . . ,ρρρN, tN − l(rN,ρρρN)

c
), (9)



wherel(ri ,ρρρ i) is the optical path length fromρρρ i to ri . Formula (9) assumes that there is only
oneoptical path fromρρρ i to ri . However, interferometers with arms having different pathlengths
can be placed betweenρρρ i andri . To take this into account, we generalize (9) in the following
way:

a(r1, t1, . . . ,rN, tN) =
∫∫

Σ1

d2ρ⊥
1 . . .

∫∫

ΣN

d2ρ⊥
N

∑
k1,...,kN

a(ρρρ1, t1−
lk1(r1,ρρρ1)

c
, . . . ,ρρρN, tN − lkN(rN,ρρρN)

c
) h(k1)

1 (r1,ρρρ1) . . .h
(kN)
N (rN,ρρρN). (10)

The indexeski label the different paths fromρρρ i to ri .
That Fourier optics techniques can be applied to multi-photon wave functions has been first

noticed in works [26–28]. Compared to these works, the present formulation brings new inter-
esting features: (i) It introduces time in the diffraction integral. This gives a space-time picture
of entanglement and enables a time-resolved analysis ofN-photon wave packet propagation
and detection [39]. Time-resolved detection is already practical with very monochromatic pho-
tons emitted by atomic sources [40]. (ii) Eq. (10) shows how to deal with interferometers in
quantum imaging set-ups. As seen from Eq. (10), one cannot account for unbalanced interfer-
ometers in the propagators only. Placing independent interferometers in the paths of entangled
photons makes it possible to explore the spatial and/or multi-particle counterparts of Franson-
like interferometry [41]. (iii) The present formalism applies to quantum systems made of an
arbitrary number of photons, possibly emitted by sources that are located indifferent trans-
verse planesΣ j . In schemes that generateN-photon entanglement through multiple nonlinear
interactions (up- and down-conversions), the surfacesΣ j may represent the (thin) nonlinear
crystals in which the interaction takes place. The propagation of photons coherently created in
these planes, possibly at different times, can be calculated using Eq. (9). An example of such a
situation is worked out in Sec. 6.

4. Detection process and wave function reduction

As pointed out in Sec. 2,|Ψ(q1, . . . ,qN)|2 is proportional to the joint detection probability to
detect theN photons at pointsq1 = (r1, t1) to qN = (rN, tN). What happens when a photon
is indeed detected at pointq∗N? In contrast to standard detection theory, the quantum state of
the Nth is not projected on a localized state|q∗N〉 but rather on vacuum|0〉 since the photon
disappears. Therefore photodetection process should be modeled by the projection operator
|0〉〈q∗N| acting on theN photon quantum state|Ψ〉. In terms of position wave functions, this
simply means that theN-particle wave functionΨ(q1, . . . ,qN) is instantaneously reduced to a
(N− 1)-particle wave functionΨ(q1, . . . ,qN−1|q∗N) in which q∗N is not a variable anymore. It
is important to realize that the quantum state is still apurestate after the detection of one of
its photons. Therefore, starting withN+M photons, it is possible toshapea desiredN-photon
wave function by designing an appropriate detection schemefor theM ancillary photons. An
example illustrating this point will be developed in Sec. 5.

The situation is different if “bucket” detectors are used. Such detector record the arrival
time but not the position of the detected photon. If theNth photon of aN-photon system is
detected in a bucket detector at timet∗N, the remainingN−1 photons are projected on a mixed
quantum state. The joint detection probability of the remaining photons at pointsq1 = (r1, t1)
to qN−1 = (rN−1, tN−1) is given by

∫

D
|Ψ(q1, . . . ,qN−1|r∗N, t∗N)|2dr∗N, whereD is the region in

which theNth photon could have been detected. As pointed out before for biphotons [27], this
probability usually differs from the one obtained by simplytracing over the degrees of freedom
of theNth photon.



5. Shaping the wave function through the detection process: application to super-
resolution imaging

To illustrate how the reduction of a three photon state can beused to shape the wave function
of the remaining two photons, consider the set-up of Fig. 1. Amulti-step nonlinear process
as in [20] produces photon triplets in a thin nonlinear crystal. We assume perfect energy and
momentum conservation, so that the photon triplets are entangled in space and time. In the
plane of the device:

a(ρρρ1, t1,ρρρ2, t2,ρρρ3, t3) = E(t3) F(ρρρ⊥
3 ) δ (ρρρ⊥

1 −ρρρ⊥
3 ) δ (ρρρ⊥

2 −ρρρ⊥
3 ) δ (t1− t3) δ (t2− t3),

whereE andF define the temporal and transverse width of the 3-photon wavefunction. A
dichroic beam splitter (DBS) separates two degenerate photons (wavelengthλ1) from the third
one (wavelengthλ2). In theλ1 output, two thin lenses (focalf1 and f3) image the output of
the crystal to the object planeO first (magnificationM = s2/(s0+ s1)), then to theDa-detector
plane (Da is a two-photon detector). The single-photon detectorDb is placed on the optical
axis. Using formula (9), one can calculate the 3-photon amplitude in theO- andDb-planes. If
a photon is detected byDb at timet∗, the wave function of theλ1 photons is projected on (see
Sec. 4)

a(r, t,r′, t ′) =δ (t − (t∗+ τ)) δ (t − t ′) δ (r⊥− r′⊥)F(r⊥/M)

exp
(

i2π |r⊥|2(1+1/M)/(λ1s2)
)

h2(0,−r/M).

whereτ = (s1+ s2− s3− s4)/c andh2(rb,ρρρ3) is the propagator from the nonlinear device to
the detectorDb. This state is a linear superposition of localized two-photon Fock states of light.
It has been shown [42] that illuminating an object with such astate enables coherent super-
resolution imaging of the object with a diffraction-limited lens f3 and a point-like detectorDa.
To get a good quality image, controlling the phase-curvature of the illuminating beam is also
crucial [43]. The scheme makes it possible to control the wavefront curvature of theλ1 2-photon
state by tailoring the detection of theλ2 photon. For instance, one can make the wave front of
λ1 photons flat in the object plane by placing a lens (focalf2) in the path toD2 (see Fig. 1)
and choosings3, s4 and f2 so that 2(λ2/λ1)M(M+1) = s2/((1/ f2−1/s4)

−1− (s0+s3)). This
solution exists if the inequalitiess4(s0+ s3)/(s0+ s3+ s4) < f2 < s4 are satisfied. In this way,
a phase accumulated by theλ1 photons is cancelled by a phase accumulated by theλ2 photon.

By moving the detectorDb along thez-axis, other wave-front curvatures can be produced. In
addition, by moving this detector transversally one creates a tilt in the direction of propagation
of the λ1 photons. If the planeO and the detectorDb are in distant laboratories (O in Bob’s
laboratory andDb in Alice’s laboratory), Alice can remotely generate a given2-photon state at

Fig. 1. Generation of heralded linear superposition of localized two-photon states of light.



Bob’s side, conditionally to the detection of theλ2 photons at the appropriate position. Such
a procedure is an example of aremote state preparationprotocol (RSP). RSP is similar to
quantum teleportation (QT) in the sense that in both cases Alice wants to send a quantum
state to Bob. The difference with QT is that in RSP Alice knowsthe state that she want to
transmit to Bob. Recently, an efficient method for remotely preparing spatial qubits has been
designed [44, 45]. In another publication, a teleportationof the entire angular spectrum of a
single photon has been reported [46]. In the setup of Fig. 1, the spatial profile of the bi-photon at
λ1 will be quasi-Gaussian. Therefore, the tilt controls the propagation axis of the beam and the
wavefront curvature controls its beam waist. The waist position is the only parameter that Alice
cannot control independently. If she communicates to Bob one real number – the offset Bob
needs to apply to his reference frame in order to have the beamwaist at the rightz-coordinate –
she could create at Bob’s site any Gaussian beam. This RSP requires an entangled state and the
communication of a real number. This simple protocol can probably be improved to reduce the
amount of the required classical communication.

6. Entangled images

To illustrate how to apply the GHF principle when the photonsare generated in two different
nonlinear crystals, consider the scheme of Fig. 2. A pump pulse is split in two parts using
a 50/50 beam splitter (BS). The two pump parts are coherent and produce non degenerated
collinear photon pairs (atλ1 andλ2) in two different non linear crystals (NLC)Γ1 andΓ2. Two
dichroic mirrors are used to separateλ1 andλ2 photons. Finally, photons atλ1 are made to
interfere on a second 50/50 BS and are detected using two point-like single-photon detectors,
Da andDb, placed on the optical axis. Note that we callz the coordinate along the optical axis
independently of its direction changes due to the BSs and DBSs.

Assuming that the crystals are thin and that the pump pulse isa quasi-plane wave, the 4-

DBS

DBS

BS

BS

Fig. 2. Scheme for quantum imaging with two independent photon pairs.



photon position wave function generated in the NLCs reads

a(ρρρ1, t1,ρρρ2, t2,ρρρ
′
1, t

′
1,ρρρ

′
2, t

′
2) =E(t2)E(t

′
2+∆/c)

(

δ (t1− t2)δ (t ′1− t ′2)δ (ρρρ
⊥
1 −ρρρ⊥

2 )δ (ρρρ
′⊥
1 −ρρρ ′⊥

2 )

+δ (t ′1− t2)δ (t1− t ′2)δ (ρρρ
′⊥
1 −ρρρ⊥

2 )δ (ρρρ
⊥
1 −ρρρ ′⊥

2 )
)

(11)

whereE(t) is the temporal profile function of the pump wave. Eq. (11) assumes a perfect mo-
mentum conservation between the pump, the signal and the idler photons during the nonlinear
generation process:|Ψ〉 = ∑i,sδ (ωs+ωi −ωp)δ (ks+ ki − kp)|ks〉|ki〉 (see [18]). Changing
from the momentum to the position basis, it turns out that thesignal and idler photons must
originate from the same scattering point in the crystal. Another way of arriving to that conclu-
sion in explained in [47], where the theory of spontaneous parametric down-conversion is ex-
plained in the wave function formalism. The wave function has been symmetrized with respect
to the coordinatesρρρ1 andρρρ ′

1 of theλ1 photons. This symmetrization is necessary because, if a
λ1 photon is detected atra (or rb) there no way to know if it came from one NLC or the other
one (see Fig. 2). No symmetrization with respect to theλ2 photons is needed because their is no
ambiguity about their origin when they are detected atrc andrd. We assumed that the NLCs are
placed at different positions (∆) in the two arms of the setup in Fig. 2 to stress that geometrical
symmetry is not required to made theλ1 photon indistinguishable.

The propagation to the pointsra, rb, rc, andrd can be computed using the GHF intergral (9):

a(ra, ta,rb, tb,rc, tc,rd, td) =
∫∫

Γ1∪Γ2

d2ρ⊥
1

∫∫

Γ1

d2ρ⊥
2

∫∫

Γ1∪Γ2

dρ ′⊥
1

∫∫

Γ2

dρ ′⊥
2

ha(ra,ρρρ1) hb(rb,ρρρ ′
1) hc(rc,ρρρ2) hd(rd,ρρρ ′

2)

a(ρρρ1, ta−
l(ra,ρρρ1)

c
,ρρρ2, tc−

l(rc,ρρρ2)

c
,ρρρ ′

1, tb−
l(rb,ρρρ ′

1)

c
,ρρρ ′

2, td −
l(rd,ρρρ ′

2)

c
). (12)

Note that according to Fig. 2, the integration surfaces for coordinatesρρρ2 andρρρ ′
2 are the non

linear crystal planesΓ1 andΓ2. However for coordinatesρρρ1 andρρρ ′
1 the integration surface is

Γ1∪Γ2 since those coordinates represent photons that cannot be distinguished by the detection
scheme. Inserting the two photon amplitude (11) into Eq. (12), one gets:

a(ra, ta,rb, tb,rc, tc,rd, td) =E(tc− τ1) E(td − τ1)

[

δ (ta− tc− τ2) δ (tb− td− τ ′2)
∫∫

Γ1

d2ρ
∫∫

Γ2

d2ρ ′ha(ra,ρρρ) hb(rb,ρρρ ′) hc(rc,ρρρ) hd(rd,ρρρ ′)

]

+δ (tb− tc− τ2) δ (ta− td − τ2)
∫∫

Γ1

d2ρ
∫∫

Γ2

d2ρ ′ha(ra,ρρρ ′) hb(rb,ρρρ) hc(rc,ρρρ) hd(rd,ρρρ ′)

]

,

(13)

whereτ1 = (L+ sc− (l +∆))/c is the propagation delay from the NLCΓ1 to the detectorrc,
while τ2 = (L+q−sc)/c andτ ′2 = (L+q−sd)/c are the propagation delay difference between
the λ1 and theλ2 photons to their respective detectors. As expected, the detections of theλ2

photons are usually not synchronous although they happen during a time bin equal to the pump
duration. However, a detection of theλ2 photons at timestc andtd heralds the arrival of theλ1

photons at timestc+ τ2 andtd + τ ′2. Unless theλ2 photons are detected at timestc andtd such
that td = tc+ τ2 − τ ′2, theλ1 photons are distinguishable by their arrival time (measuring the



arrival time of the photon detected atra reveals NLC it originates from). By post-selecting only
coincidence detection events at space-time point(rc, t∗) and(rd, t∗ + τ2− τ ′2) the two-photon
wave function of theλ1 photons is projected on

a(ra, ta,rb, tb) =E2(t∗− τ1)δ (ta− t∗− τ2)δ (ta− tb) [φac(ra) φbd(rb)+φad(ra) φbc(rb)] , (14)

where

φac(ra) =
∫∫

Γ1

ha(ra,ρρρ) hc(rc,ρρρ)d2ρ , (15a)

φad(ra) =

∫∫

Γ2

ha(ra,ρρρ ′) hd(rd,ρρρ ′)d2ρ ′, (15b)

φbd(rb) =

∫∫

Γ2

hb(rb,ρρρ ′) hd(rd,ρρρ ′)d2ρ ′, (15c)

φbc(rb) =

∫∫

Γ1

hb(rb,ρρρ) hc(rc,ρρρ)d2ρ . (15d)

Such a state is a pure entangled two-particle state, although not a maximally entangled Bell-
state since photon position wave functions are not restricted to a two-dimensional Hilbert space.
Furthermore, by designing the propagatorshα (α ∈ {a,b,c,d}), a large variety of entangle
states can be produced. In particular, if the propagation from the last BS to the detectorsra

andrb is identical,ha(ra,ρρρ) = i hb(rb,ρρρ) andha(ra,ρρρ ′) =−i hb(rb,ρρρ ′). As a result,φac(r) =
i φbc(r) ≡ φ1(r), φbd(r) = −i φad(r) ≡ φ2(r), and the quantum state (14) becomes similar to
the |Ψ+〉 Bell-state:

a(ra, ta,rb, tb) =E2(t∗− τ1)δ (ta− t∗− τ2)δ (ta− tb) [φ1(ra) φ2(rb)+φ2(ra) φ1(rb)] . (16)

As seen from Eq. (16), the scheme of Fig. 2 realises an entanglement swapping in the spatial
domain. An heralded entangled photon pairs is produced froma 4-particle state of light. How-
ever in contrast with standard qubit entanglement swapping[48], entanglement is produced
betweencontinuous-variablestates that live in infinite-dimensional Hilbert space. Such states
have applications in continuous variable quantum information processing. As shown earlier,
protocols initially designed for multi-photon field quadrature variables (for instance [49]) can
be efficiently implemented using(x,k) variables of single-photon fields [50–52]. Entangled qu-
dits can also be produced by restricting the photon state to ad-dimensional linear subspace of
the full Hilbert space, as has been recently investigated bymany authors [9,53,54].

The specific arrangement of Fig 2 is made of two positive lenses (focal lengthf ) and two
complex transmission masks (M1 andM2). The arrangement is such that the detectorsra andrb

are in the Fourier planes of the lensesrelatively to the two-photon imagingconditions. In other
words, we assume that the following two-photon lens law is satisfied:

1
L

+
1

p+q
=

1
f
, (17)

with

L = (2L− l −∆− p)+
λ2

λ1
(L− l −∆+ sc)) = (2L− l − p)+

λ2

λ1
(L− l + sd)). (18)

Note that the second equality in Eq. (18) can only be satisfiedsimultaneously with the first one
if

sc− sd =
λ1+λ2

λ2
∆. (19)



The lengthL is the propagation length fromrc to the crystalΓ1 (and fromrd to the crystal
Γ2), then from the crystal to the lens in the geometrical opticsinterpretation of two photon-
imaging [18]. We also assume that the detection pointsrc andrd lay on the optical axis.

The two-photon detection amplitude at detectorsra andrb can be deduced from Eqs. (15)
and (16), after calculating the propagatorshα (α ∈ {a,b,c,d}) using standard Fourier optics
techniques [38]. The result of the calculation is

φ1(r) =
−1

λ 2
1L (p+q)

exp

[

i
2π
λ1

(2L− l −∆+q)

]

exp

[

i
2π
λ2

(L− l −∆+ sc)

]

exp

[

i
π
λ1

x2+ y2

p+q

]

M̃1

(

x
λ1(p+q)

,
y

λ1(p+q)

)
(20)

and

φ2(r) =
−1

λ 2
1L (p+q)

exp

[

i
2π
λ1

(2L− l +q)

]

exp

[

i
2π
λ2

(L− l + sd)

]

exp

[

i
π
λ1

x2+ y2

p+q

]

M̃2

(

x
λ1(p+q)

,
y

λ1(p+q)

)

,

(21)

where
M̃α(ξ ,η) =

∫∫

dxdy Mα (x,y) exp[−i2π(xξ + yη)] (22)

is the spatial Fourier transform of the maskMα (α ∈ {1,2}). Therefore

a(ra, ta,rb, tb) =E2(t∗− τ1)δ (ta− t∗− τ2)δ (ta− tb)
[

M̃1(ra) M̃2(rb)+ M̃2(ra) M̃1(rb)
]

(23)

up to constant or irrelevant phase factors. By designing thecomplex masksM1 andM2, one can
prepare any two-photon position-entangled state of light.Moreover, since this scheme relies on
entanglement swapping, the photon pair is heralded. We callthe state (23) an entangled-image
state because each photon that is detected is in a quantum superposition of two different images,
but joint detections are correlated.

7. Conclusion

In summary, we explored the physics of quantum imaging withN > 2. By quantum imaging,
we mean processing the photons through arbitrary optical systems (made of lenses, beams split-
ters, apertures, complex modulation masks) that modify thewave fronts of the single-photon
wave functions and possibly projects theN-photon state on aM-photon state (M < N)) by de-
tecting some of the particles. We present a general and self-consistent formalism that describes
the (paraxial) propagation of multi-photon states in position representation and uses methods
closely related the Huygens-Fresnel principle and Fouriertechniques in coherent optics. Com-
pared to the bi-photon physics (entangled photons producedby parametric down-conversion),
some delicate issues appear in the generalN-photon case when photons are generated coher-
ently in different places (two separate non-linear crystal, for instance) but nevertheless be-
come indistinguishable by propagating in the optical system. We show how to deal with such
problems when computing the propagation of theN-photon quantum state and illustrate this
situation by describing a scheme that performs a continuous-variable entanglement-swapping
between two photon pairs generated in two different nonlinear crystals. The resulting heralded
two-photon state displays entanglement in the position space: each photon is in a superposition
of two different field distributions, with perfect anti-correlation:φ1(ra) φ2(rb)+φ2(ra) φ1(rb).
We expect both the general formalism and the worked out examples to stimulate new design of
N-photon sources with engineered spatial entanglement.
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