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Abstract:  We investigate the physics of quantum imaging with> 2
entangled photons in position space. It is shown that, ieyparapproxima-
tion, the space-time propagation of the quantum state cateberibed by
a generalized Huygens-Fresnel principle for Nhoton wave function.
The formalism allows the initial conditions to be set on riplét reference
planes, which is very convenient to describe the generaifomultiple
photon pairs in separate thin crystals. Applications imig state shaping
and spatial entanglement swapping are developed.
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1. Introduction

In the recent years, there has been a growing interest irupiiogl quantum states of light in
which more than two photons are entangled. So far, up torsi-gntangled photons have been
produced through entanglement swapping [1] and photoletsigtart being produced through
cascaded nonlinear processes [2] or photon number pesitissl in a single parametric process
[3]. Multi-photon interferometry techniques have beenaleped to demonstrate the hyper-
entanglement of a large number of qubits [4] as well as phaperssensitivity [5, 6] (for a
recent revue ohl-photon entanglement and interferometry see Bjpatialentanglement[8] is
particularly interesting for quantum information prodagsand communication because large
Hilbert spaces can be easily manipulated using passiveswaisdctive spatial light modulator
[9-14]. It can also be used to improve imaging resolutioraum super-resolution imaging,
guantum lithography) [15, 16] and produce distributed dnd'st” images [17-19]. Schemes
to realise spatiaN-photon entanglement (witN > 2) have been proposed [20, 21]. One can
foresee that the manipulation of spatial entanglementefdroton states of light [22—25] will
become an important research field in the forthcoming decade

In this work, we investigate the physics of quantum imagiritp\W > 2 entangled photons.
We describe the quantum state of the electromagnetic fiedy @sN-particle wave function
in positionrepresentation. Position representation is preferrecoimemtum representation be-
cause photon-position is what is actually detected by tlwegriicounters in a quantum optics
experiment. However, in many experiments on spatial ef¢amgnt that have been performed
so far, photons are generated by spontaneous parametnicctmwversion in a nonlinear crys-
tal and detected in the crystal far-field; in this particudase, people usually prefer working
in momentum representation of the photon state since thd@osorrelations in the far-field
mimic the momentum correlations in the nonlinear crystahpl In the case of an arbitrary
optical system (made of lenses, mirror, masks, beam sglitte) between the crystal plane and
the detection region, the use of the momentum representatighe field in the crystal plane
will involve mixed propagatorg(k,r ), wherer; are the positions of the photon-counters and
k wave vectors [22, 23]. Such propagators arise because thenghgenerated through nonlin-
ear interactions are first regarded as populating an enseshplane-wave modes (momentum
representation). Then, when it comes to calculate the @®itgction probabilities at some se-
lected positions, the local interference of all these mdtiest is the position representation)
is calculated. Instead, if position representation is ehdsom the beginning, the propagators
have the usual and intuitive point-to-point fotir, r ;). For applications of the photon position
representation to quantum imaging problems with bi-phe{in= 2), see [11,12].

Application of standard Fourier optics techniques to thsifman representation wave func-
tion shows that the propagation Wfphotons through an optical system can be described by a
generalized Huygens-Fresnel principle. This has beemfitated for biphoton states produced
by parametric down-conversion in nonlinear crystals [B}—@ur generalization tiN-photon
states brings new interesting features: (i) it introdu@@e tin the diffraction integral (giving
a space-time picture of entanglement propagation), (8hdaws how to deal with interferom-
eters in the photon path, and most importantly (iii) the falism applies to quantum systems
made of an arbitrary number of photons, possibly emitteddoyces that are located differ-
enttransverse planes;. To our best knowledge, this last situation has never beasigered



before in the context of quantum imaging despite its prattioportance (see the generation
scheme in [1], for instance).

The article is organized as follows. In Sec. 2, we review thanflations of the position wave
function representation of light. Then, we turn to paragipproximation, derive the general-
ized Huygens-Fresnel principle (Sec. 3) and discuss theexdion between the photon wave
function and photodetection probabilities (Sec. 4). Hinai Sec. 5 and 6, we apply the general
formalism to specific examples. The example of Sec. 5 showsamoinitial 3-photon position
entanglement can be used to shape a 2-photon wave functargtinthe detection of the third
photon. In Sec. 6, we analyse an entanglement-swappingscheting on a pair of bi-photons
produced in two different nonlinear crystals: combining tletection of two photons with wave
front shaping of remaining two photons, entangled imagasescreated.

2. Photon wave functionsin position representation

Thepositionwave function of a photon is defined as the projection of thtestector on local-
ized particle states (the eigenstates of the photon posiperatoir) [29]. The very existence
of such an operator for photons and the problem of photorifateon has been a long standing
debate that received a satisfying solution only recentig &xistence of a proper photon posi-
tion operatoff that has commuting Hermitian Cartesian components satsfk, pi] = ihdy

(p being the photon momentum) has been proven [29, 30]. Theiteigetions off are trans-
verse waves that can be interpreted as localized-phottessial]. Any admissible single-
photon wave function is obtained as a linear combinatiorneé¢ localized statebl-photon
wave functions are symmetric elements of the tensor prazfd¢single-particle Hilbert spaces.
However, the definition of the position operafois not unique. Therefore, there is more than
one way to assign a position wave function to a single phatba.most popular one is probably
the so-called Bialynicki-Birula-Sipe wave functigr(r,t) = [ (r,t) ¢_(r,t)] which has two
vector components corresponding to photons with positiereegative helicity [32, 33]. Each
vector component has a Fourier expansion that reads

ei(k~r—kc t)

@ W

W (r.t) :/d3k VAkee (k) f- (k)
where k = |k| and ey (k) are the unit circular polarization vectors for photons prop
gating in thek-direction. Normalization is such that the complex coeéids f. satisfy
Shes J &k | fa(k)|2 = 1. This wave function transforms as an elementary objectuibdrentz
transformation and can be easily connected to Maxwell fi¢gtdthis work, we write the wave
function is a slightly different (but equivalent) way thatsists in summing both helicity com-
ponents together:

Wirt)=¢ (r,t)+g_(rt). (2)
This provides a vector representation instead of the bieveme [34]. Sincap, andy _ are
orthogonally polarized, they never mix:¥ is given,{, andy _ can be deduced. Therefore
the information content in the vector functi&his the same as in the bi-vector figld
Replacing the complex coefficienfs (k) by annihilation operatora,k) in Eq. (1), the
fundamental photon field is found to be proportional tofibsitive frequencpart of the electric
field: gl

(2m)32 = —i /26 EM)(r,1).

Y=y [dkvikean(k) an(k)
h==+
Note that® 0 E®) holds information abouboth electric and magnetic field. Therefore,
it provides a complete information about electromagnetinfiguration. To show this ex-
plicitly, one decompose® again into its helicity component§, and {y_ and subtract



them: this yieldsB*) = \/po/2(@, — @), the positive frequency part of the magnetic
field. In the second quantization formalism, the state ofnglsiphoton wave packet writes:
W) = Shes JA3k fa(K) |Lcn), where|Lp) = aﬁ(k)|0> and fi (k) are the same spectral
amplitudes that appear in Eq. (1). The connection betweerfitst and second quantiza-
tion formalism is given by the relatiol(r,t) = (O|W¥(r,t)|W) = —i /2& (OE(F)(r,t)|W).
Since (®|W(r,t)|W) = 0 for all |®) # |0), we haveW; (q)Wi(q) = (W|¥!(q)Pi(q)|W) =
2£0<I§i(,_)(q’)éi<+>(q)> for any pair of pointsq = (r,t) andq = (r’,t’), where the indexes
(i,i") € {x,y,z}? represent Cartesian components. This relates the Bi&iyBicula-Sipe wave-
function to the usual first-order correlation functions ofierence theory. Therefore, in the con-
text of first-order perturbation theory and dipole momemgriaction with matterW(r,t)|? is
proportional to the photon absorption (detection) prolitgtzit pointr at timet (see Sec. 4). In
addition, [ |W(r,t)|2d% = (W|H|W) is the expectation value of the photon energy [32—-34]. As a
consequencé®(r,t)|? can also be interpreted as a spatial density of electrontiagmeergy at
timet. Strictly speaking, one cannot interpfti(r,t)|2 in terms of photon probability density
in position space despite it is a measure of photon energyitation [32—35].

The generalization tbl-photon states

W=y /ﬁhm/§mmmeLmkMMmpwhmm
hy,hy

is straightforward. The connection between wave functeonfields is given by

Wiy i (G- On) = ()N (280201 E (an) .. B (an)|W) 3)
and

W

7.1

(s O Wi (0., G) = (260" (] (e i (a)EL (an) -+ B (qw)).

4)
Eqg. (4) shows thatany field correlation function of aN-photon system can be com-
puted as a product of two tensor elements of fphoton wave function. As in the one
particle case, théN-photon wave-function can be interpreted in terms of phetection.
Yigoin | Wigin (AL, - - ,qn)|? is proportional to the joint probability of detecting theqgtbns
at space-time point&s, ..., qn).

It should be noted that the multi-particle wave functionsstoucted in this section are differ-
ent from those that are constructed from the bi-vector fgrfnt) = [ (r,t) ¢ _(r,t)] of the
Bialynicki-Birula-Sipe wave function [36, 37]. The lateartnot be directly interpreted in terms
of N-photon detection amplitude because they contain a magpeati to which electric dipole
detectors are insensitive. However, since in paraxial@ppration the magnetic field carries
the same energy as the electric field, the square of both waatiéns are proportional. There-
fore, joint photo-detection probabilities calculatedfreector and bi-vector wave functions are
identical.

In [36], it has been shown that the bi-vector form of a BiatkiiBirula-Sipe wave function
satisfies a Maxwell-Dirac differential equation whateves humber of photonN in the sys-
tem. This equation can be used to study the photon propagaticcuum, in (not dispersive,
possibly inhomogeneous) dielectrics, and at interfades. well suited to study propagation
in waveguides or in scattering media such as a turbulentsgihreye as demonstrated in [36].
However, to study the propagation bif photons through a table-top optical setup made of
masks, lenses, mirrors and beam-splitter, an integraloagprsimilar to the Huygens-Fresnel
principle in coherent optics is more suitable. Such an iaieigrmulation is paraxial and ne-
glects all boundary conditions (in particular reflectionshee interfaces of optical elements),



except a set of reference surfaces (usually planes) on wimécfield values must be specified.
We derive such a formulation in the next section.

3. Generalized Huygens-Fresnel principle

We first consider free-space propagation. We make the diymgjiassumption that we deal
with paraxial states of light, in which case polarizatioredmot change much during propa-
gation. Therefore, we drop the polarization-related im$exConsidering photons propagating
along thez-axis, we use the Huygens-Fresnel principle [38] to expE&ss at some point as a
function of its values on a reference plahgeat z-coordinate(j,

EC(pyt— 2 5)
Ir—pjl 7

. 1 d
E(+)(r’t):% /z_dzij_dt
]

and inject this in Eq. (3):

1
W(rl,tl,...,rN,tN):W/z def...//z ok
1 N

dtil"'dt_ct\‘w(platl_ \T1*CP1\7...7PN7»[N o \rN—CPN\)
r1=pPq| - Irn—pnl

Note that, in principle, up tdN different reference surfaces can be appear in Eq. (6) — one
per occurrence of th&(*)-field in Eq. (3). For indistinguishable photons, these tuamg
conditions must be properly symmetrized to leave the wametfon unchanged under parti-
cle exchange. We call Eg. (6) the generalized Huygens-Eré&iHF) principle forN-photon
wave functions. In Egs. (5) and (§; = (&i.n;j.¢;) (j € {1,...,N}) are points in thej-plane
and ij = (&j,n;) are their transverse components. In the optical domaintopiscare usu-
ally quasi-monochromatic. Therefore, the wave functiom loa writtenW(rq,t1,...,rn,tn) =
a(rl,tl,...,r,\,,t,\,)exp(—i27rc(3—1l + - }\ﬂN)), wherea(ry,ty,...,rn,tn) is a slowly varying
function of time and\; (j € {1,...,N}) are the central wavelengths of the photons. Note that
nothing prevents photons from having the same central wagéh or even being indistinguish-
able. Inserting that anzats in Eq. (6) and taking into actthata(ri,ts,...,rn,tn) is slowly
varying in time, one obtains

(6)

. P27y —py| P27 —py|
(=N 2 1 o | eM e
a(rl,tl,...,rN,tN):i/ d°p // d°p
M. A5 L R Iri— Py I'n—Pn|
ry— rn—
xa(platl_%a"pratN_M)' (7)

If propagation fromp, tor; is through an optical system, the free space propagator

py = = exp(i%Iri - 1) @
r,p;) = —

P = ri —pil

must be replaced by the appropriate dng&;,p,;), which can be computed using standard

Fourier optics techniques [38]. With this generalizatigg, (7) becomes

a(rl,tl,...,rN,tN)://z dzpf‘//z dzpd‘ hi(r1,P4)..-bn(rn, Py)
1 N

I(rq,
a(plvtl_ ﬁv apNvtN -

l(rN’pN)
c e O



wherel(ri, p;) is the optical path length frorp, to r;. Formula (9) assumes that there is only
oneoptical path fronp; tor;. However, interferometers with arms having different gatiyths
can be placed betwegn andr;. To take this into account, we generalize (9) in the follogvin
way:

a(HJL---JNJN)Z//Z dzpf...//z &’y
JJzy JEIN

Ik, (11, Ik (NS
zma(platl_wa"pratN_M)hj<|_k1>(rl7pl)"'h§\lkN>(rN7pN)' (10)

The indexes; label the different paths from; tor;.

That Fourier optics techniques can be applied to multi-phgtave functions has been first
noticed in works [26—28]. Compared to these works, the mitefeemulation brings new inter-
esting features: (i) It introduces time in the diffractiondgral. This gives a space-time picture
of entanglement and enables a time-resolved analysié-pifioton wave packet propagation
and detection [39]. Time-resolved detection is alreadygtzal with very monochromatic pho-
tons emitted by atomic sources [40]. (ii) Eg. (10) shows howdeal with interferometers in
guantum imaging set-ups. As seen from Eq. (10), one canweouat for unbalanced interfer-
ometers in the propagators only. Placing independenf@rtaneters in the paths of entangled
photons makes it possible to explore the spatial and/oritpaiticle counterparts of Franson-
like interferometry [41]. (iii) The present formalism apgs to quantum systems made of an
arbitrary number of photons, possibly emitted by sources #ne located irdifferenttrans-
verse planeg&;. In schemes that generatephoton entanglement through multiple nonlinear
interactions (up- and down-conversions), the surfacemay represent the (thin) nonlinear
crystals in which the interaction takes place. The propagaif photons coherently created in
these planes, possibly at different times, can be calailaang Eq. (9). An example of such a
situation is worked out in Sec. 6.

4. Detection process and wave function reduction

As pointed out in Sec. 2¥(qy,...,qn)|? is proportional to the joint detection probability to
detect theN photons at points); = (r1,t1) to gn = (rn,tn). What happens when a photon
is indeed detected at poigf;? In contrast to standard detection theory, the quanture sfat
the N is not projected on a localized stdg) but rather on vacuun0) since the photon
disappears. Therefore photodetection process should ldeletbby the projection operator
|0){(qg| acting on theN photon quantum statéV). In terms of position wave functions, this
simply means that th&-particle wave functio®V(q,...,qn) is instantaneously reduced to a
(N — 1)-particle wave functio(qs,...,0n-1/df) in which gf; is not a variable anymore. It
is important to realize that the quantum state is stpluse state after the detection of one of
its photons. Therefore, starting with+ M photons, it is possible tehapea desiredN-photon
wave function by designing an appropriate detection schiemie M ancillary photons. An
example illustrating this point will be developed in Sec. 5.

The situation is different if “bucket” detectors are usedcl$ detector record the arrival
time but not the position of the detected photon. If M photon of aN-photon system is
detected in a bucket detector at tifgje the remainindN — 1 photons are projected on a mixed
quantum state. The joint detection probability of the rerraj photons at pointg; = (rq,t1)
to On—1 = (fn—1,tn—1) IS given by [, |W(qu,...,an-1]r5, 1) |2dry, whereZ is the region in
which theN™ photon could have been detected. As pointed out before phrobdns [27], this
probability usually differs from the one obtained by simplcing over the degrees of freedom
of theN™ photon.



5. Shaping the wave function through the detection process: application to super-
resolution imaging

To illustrate how the reduction of a three photon state candeel to shape the wave function
of the remaining two photons, consider the set-up of Fig. Indlti-step nonlinear process
as in [20] produces photon triplets in a thin nonlinear aisiVe assume perfect energy and
momentum conservation, so that the photon triplets arengtgd in space and time. In the
plane of the device:

a(py,t1, P, t2, P3.t3) = E(ts) F(p3) 8(p1 — Pp3) 8(P7 — P3) O(t1 —t3) S(t2 —ta),

whereE andF define the temporal and transverse width of the 3-photon Vi@vetion. A
dichroic beam splitter (DBS) separates two degenerateopBdtvavelengtid,) from the third
one (wavelengti,). In the A; output, two thin lenses (focdh and f3) image the output of
the crystal to the object plar@first (magnificatiorM = s,/(sp + S1)), then to theD,-detector
plane D5 is a two-photon detector). The single-photon deteElgiis placed on the optical
axis. Using formula (9), one can calculate the 3-photon #og# in theO- andDy-planes. If

a photon is detected Hyy, at timet,., the wave function of thd; photons is projected on (see
Sec. 4)

alr,t,r't) =8(t—(t,+1)) 5t—t") 8(r- —r'HE(rL/M)
exp(i2n|rL|2(1+ 1/M)/(/\1$2)) ha(0, —r /M).

wheret = (s1+$ — S5 — &) /¢ andhy(rp, p3) is the propagator from the nonlinear device to
the detectoby,. This state is a linear superposition of localized two-phdtock states of light.

It has been shown [42] that illuminating an object with sucétate enables coherent super-
resolution imaging of the object with a diffraction-limitéensf; and a point-like detectdd,.

To get a good quality image, controlling the phase-cuneatirthe illuminating beam is also
crucial [43]. The scheme makes it possible to control theafrawt curvature of tha; 2-photon
state by tailoring the detection of thl@ photon. For instance, one can make the wave front of
A1 photons flat in the object plane by placing a lens (foigalin the path toD, (see Fig. 1)
and choosings, s4 and f; so that 2A,/A1)M(M +1) = s,/((1/f2— 1/s4) 1 — (S0 +3)). This
solution exists if the inequalities (sp+ S3) /(S0 + S8+ ) < fo < 5 are satisfied. In this way,
a phase accumulated by the photons is cancelled by a phase accumulated by thmhoton.

By moving the detectddy, along thez-axis, other wave-front curvatures can be produced. In
addition, by moving this detector transversally one creatélt in the direction of propagation
of the A1 photons. If the plan® and the detectoby, are in distant laboratorie®(in Bob’s
laboratory andy, in Alice’s laboratory), Alice can remotely generate a giephoton state at
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Fig. 1. Generation of heralded linear superposition ofliaed two-photon states of light.



Bob’s side, conditionally to the detection of the photons at the appropriate position. Such
a procedure is an example oframote state preparatioprotocol (RSP). RSP is similar to
guantum teleportation (QT) in the sense that in both case&s Avants to send a quantum
state to Bob. The difference with QT is that in RSP Alice kndhes state that she want to
transmit to Bob. Recently, an efficient method for remotelgparing spatial qubits has been
designed [44, 45]. In another publication, a teleportatibtthe entire angular spectrum of a
single photon has been reported [46]. In the setup of Fignelspatial profile of the bi-photon at
A1 will be quasi-Gaussian. Therefore, the tilt controls thegagation axis of the beam and the
wavefront curvature controls its beam waist. The waisttmsis the only parameter that Alice
cannot control independently. If she communicates to Bab real number — the offset Bob
needs to apply to his reference frame in order to have the beast at the righiz-coordinate —
she could create at Bob’s site any Gaussian beam. This R8Peg@n entangled state and the
communication of a real number. This simple protocol carbpbdy be improved to reduce the
amount of the required classical communication.

6. Entangled images

To illustrate how to apply the GHF principle when the photans generated in two different
nonlinear crystals, consider the scheme of Fig. 2. A pumgeid split in two parts using
a 50/50 beam splitter (BS). The two pump parts are coherahparduce non degenerated
collinear photon pairs (at; andA») in two different non linear crystals (NLT); andl"». Two
dichroic mirrors are used to separadtgand A, photons. Finally, photons &t; are made to
interfere on a second 50/50 BS and are detected using twa-lgarsingle-photon detectors,
D, andDy, placed on the optical axis. Note that we aathe coordinate along the optical axis
independently of its direction changes due to the BSs andsDBS

Assuming that the crystals are thin and that the pump pulsegsasi-plane wave, the 4-
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Fig. 2. Scheme for quantum imaging with two independent @hpgirs.



photon position wave function generated in the NLCs reads

a(py 11, P to, P4, P 1) —E(12)E(tg +/0) (3(ta— 1) 3(t1 — )3 (p1 — p3)3(P's —P'2)

+3(t ~ )3 (L~ 15)3(P' —P3)3(P1 — 7))
(11)

whereE(t) is the temporal profile function of the pump wave. Eg. (11)asss a perfect mo-
mentum conservation between the pump, the signal and thegtibtons during the nonlinear
generation proces$¥) = ¥; 0(ws + w — wp)d(Ks+ ki —Kp)|Kks)|Ki) (see [18]). Changing
from the momentum to the position basis, it turns out thatsilyeal and idler photons must
originate from the same scattering point in the crystal. theoway of arriving to that conclu-
sion in explained in [47], where the theory of spontaneouareatric down-conversion is ex-
plained in the wave function formalism. The wave functios baen symmetrized with respect
to the coordinatep, andp’, of theA; photons. This symmetrization is necessary because, if a
A1 photon is detected af, (or rp) there no way to know if it came from one NLC or the other
one (see Fig. 2). No symmetrization with respect toxhphotons is needed because their is no
ambiguity about their origin when they are detected.andr 4. We assumed that the NLCs are
placed at different positiond\j in the two arms of the setup in Fig. 2 to stress that geonatric
symmetry is not required to made thg photon indistinguishable.

The propagation to the pointg, rp, rc, andrg can be computed using the GHF intergral (9):

a(ravtavrbvtbertCardvtd)://_ ur dzpf/A dzpé_/‘/r ur dp/i_/r dplé_
1Yt 2 1 1Yl 2 2

ha(raapl) hb(rb,p&) hC(rCaPZ) hd(rd7p/2)

I(ra, I(rc, I(rp, P} [(rg,p"
a(py,ta— M’ oote — ﬂaplptb_ &ap&vtd _ ﬂ) (12)

c c c c
Note that according to Fig. 2, the integration surfaces @mrdinatesp, and p, are the non
linear crystal plane§ andl',. However for coordinatep, andp’ the integration surface is
1 Ul 2 since those coordinates represent photons that cannadtivegdished by the detection

scheme. Inserting the two photon amplitude (11) into Eqg),(G2e gets:
a(ra,ta, rbatba rCatC7 rdatd) :E(tC - Tl) E(td - Tl) |:6(ta_ tC - TZ) 6(tb - td - Té)

J[ o [[ dp'lra.p) holrep) etre,p) Pulrand)|
M M2
+0(th—tc—T2) S(ta—ta — T2)

J[ . [ dohelra.p) tuire.p) helre.p) hd<rd,p'>](, |
13

wheretr; = (L+s — (I +4))/c is the propagation delay from the NLIG to the detectory,
while T, = (L+q—sc)/candt, = (L+q—sy)/c are the propagation delay difference between
the A1 and theA, photons to their respective detectors. As expected, trectiens of theA,
photons are usually not synchronous although they happ@mgaitime bin equal to the pump
duration. However, a detection of the photons at time& andty heralds the arrival of thé;
photons at time& + 12 andty + 15. Unless the\, photons are detected at timigsandty such
thatty = tc + 12 — 15, the A1 photons are distinguishable by their arrival time (measuthe



arrival time of the photon detectedratreveals NLC it originates from). By post-selecting only
coincidence detection events at space-time p@int.) and(rg,t, + 72 — 75) the two-photon
wave function of the\; photons is projected on

a(ra,ta, o, th) =E(t. — 11)8(ta — te — 12)3(ta —to) [@c(Fa) @a(rb) + Gad(ra) @he(rp)], (14)

where
@elre) = [ halrap) helre p)op. (152)
Balra) =[] halrap) halra )% (150)
@alrs) =[] Polrs,p) halra, )% (150)
@elre) =[] lo,p) helre,p)p. (15d)

Such a state is a pure entangled two-particle state, althnaga maximally entangled Bell-
state since photon position wave functions are not resttittt a two-dimensional Hilbert space.
Furthermore, by designing the propagathgs(a € {a,b,c,d}), a large variety of entangle
states can be produced. In particular, if the propagatiom fthe last BS to the detectorg
andry, is identical,h,(ra, p) =i hp(rp, p) andha(ra, p’) = —i hy(ry, p’). As a resultgc(r) =

i @e(r)=@(r), @d(r) = —i @g(r) = @(r), and the quantum state (14) becomes similar to
the|W*) Bell-state:

a(ra,ta, Mo, t) =E2(t. — T1)O(ta — te — 12)3(ta — to) [@1(ra) @2(1b) + @2(ra) @u(rp)].  (16)

As seen from Eg. (16), the scheme of Fig. 2 realises an erganagit swapping in the spatial
domain. An heralded entangled photon pairs is produced &dnaparticle state of light. How-
ever in contrast with standard qubit entanglement swappiy entanglement is produced
betweencontinuous-variablestates that live in infinite-dimensional Hilbert space. Isatates
have applications in continuous variable quantum inforomaprocessing. As shown earlier,
protocols initially designed for multi-photon field quatlree variables (for instance [49]) can
be efficiently implemented usin(g, k) variables of single-photon fields [50-52]. Entangled qu-
dits can also be produced by restricting the photon statedtdienensional linear subspace of
the full Hilbert space, as has been recently investigateadyy authors [9, 53, 54].

The specific arrangement of Fig 2 is made of two positive Ieifgzcal lengthf) and two
complex transmission maskegl{ andMy). The arrangement is such that the deteatgiendry,
are in the Fourier planes of the lengektively to the two-photon imagingpnditions. In other
words, we assume that the following two-photon lens law iisBad:

1 1 1

_ = 17
$+p+q f’ (17)

with

A A
L =@L-1-A- p)+)\—2(L—I —D+s))=(2L—1— p)—i—)\—Z(L—I +s).  (18)
1 1
Note that the second equality in Eq. (18) can only be satisfimdltaneously with the first one
if
At A
=

A. (19)



The length.Z is the propagation length from to the crystal’; (and fromry to the crystal
'), then from the crystal to the lens in the geometrical optitsrpretation of two photon-
imaging [18]. We also assume that the detection paigtndry lay on the optical axis.

The two-photon detection amplitude at detectgysindrp can be deduced from Egs. (15)
and (16), after calculating the propagatbgs(a € {a,b,c,d}) using standard Fourier optics
techniques [38]. The result of the calculation is

%(r)zmexp{i%QL—l—A+q)} exp{ii—Z(L—l—AJrsc)} .
exp{iﬂx2+y2] |\7|1< X y > (20)
A1 p+q A(p+a)’ Ai(p+0q)
and
@(r)zmexp[ii—]g(a—wq)] eXp[ii—Z(L—HSd)]
2 2 (21)
exp[iEx +y}l\ﬁz( x _ Y >,
Ar p+q A(p+a)’ As(p+q)
where

Nia (§.17) = /[ axdy Ma (x.y) expl-i2rt(x& -+ yn) 22)

is the spatial Fourier transform of the madk (a € {1,2}). Therefore
a(ra,ta, o, tn) =E2(t — 11)8(ta — tu — 12)3(ta — to) [Ma(ra) Ma(rp) + Ma(ra) Ma(rp)] (23)

up to constant or irrelevant phase factors. By designingoneplex mask#1, andM,, one can
prepare any two-photon position-entangled state of Iiglotreover, since this scheme relies on
entanglement swapping, the photon pair is heralded. Wetmaltate (23) an entangled-image
state because each photon that is detected is in a quantenpssition of two differentimages,
but joint detections are correlated.

7. Conclusion

In summary, we explored the physics of quantum imaging Witk 2. By quantum imaging,
we mean processing the photons through arbitrary optiséésys (made of lenses, beams split-
ters, apertures, complex modulation masks) that modifynéee fronts of the single-photon
wave functions and possibly projects tRephoton state on ®-photon stateNl < N)) by de-
tecting some of the particles. We present a general anageffistent formalism that describes
the (paraxial) propagation of multi-photon states in positepresentation and uses methods
closely related the Huygens-Fresnel principle and Foteigntniques in coherent optics. Com-
pared to the bi-photon physics (entangled photons prodoggrametric down-conversion),
some delicate issues appear in the gendrphoton case when photons are generated coher-
ently in different places (two separate non-linear crydial instance) but nevertheless be-
come indistinguishable by propagating in the optical systé/e show how to deal with such
problems when computing the propagation of Nhoton quantum state and illustrate this
situation by describing a scheme that performs a continwratiable entanglement-swapping
between two photon pairs generated in two different noalireystals. The resulting heralded
two-photon state displays entanglement in the positionespgach photon is in a superposition
of two different field distributions, with perfect anti-getation: @y (ra) @(rp) + @(ra) @ (rp).

We expect both the general formalism and the worked out ebesp stimulate new design of
N-photon sources with engineered spatial entanglement.
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