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Abstract
In this paper, we follow the same logic as in Hausman (1978) to create a testing procedure that
checks for the presence of outliers by comparing a regression estimator that is robust to outliers
(S-estimator), with another that is more e¢ cient but a¤ected by them. Some simulations are
presented to illustrate the good behavior of the test for both its size and its power.

KEYWORDS: S-estimators, MM-estimators, Outliers, Linear Regression, Generalized Method
of Moments, Robustness.
JEL CLASSIFICATION: C12, C21, H11

1 Introduction

In a seminal paper, Hausman (1978) introduced a testing procedure that, under some assumptions,

allows to balance consistency and e¢ ciency when comparing two estimators. Hausman�s testing pro-

cedure is used extensively in econometrics: in the context of panel data, for example, it is called on

to check whether the assumptions underlying the random-e¤ects model are satis�ed. This is done by

comparing the �xed-e¤ects model (consistent, but ine¢ cient) with the random-e¤ects model (more

e¢ cient, but potentially inconsistent if a set of assumptions is not ful�lled). If the di¤erences between

the corresponding coe¢ cients of the two models is not systematic, the test indicates that it is prefer-

able to use a random-e¤ects model since the gain in e¢ cency dominates the loss in consistency. In
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this paper, we follow the same logic as in Hausman (1978) to create a testing procedure that enables

to check if the presence of outliers in�uences the estimation of the regression parameters in a linear

model. The idea is to compare a regression estimator that is robust (S), with an estimator that has

higher e¢ ciency but is more in�uenced by outliers (hereafter called MM, not to be mistaken for the

exactly identi�ed Generalized Method of Moments estimator that will be denoted by GMM). More

precisely, consider the regression model

Yi = Xt
i � + "i

where Yi is the dependent variable and Xi is the ((p+ 1)� 1) vector of covariates (plus the constant)

observed for i = 1; :::N . The testing procedure consists in comparing the regression coe¢ cients re-

spectively estimated by the S- and MM-estimators to check if they are statistically di¤erent (as will

be explained later, the constant is disregarded). The above-mentioned comparison of the regression

coe¢ cients is carried out by calling on the Generalized Hausman test statistic de�ned as

H = (�̂
S
� �̂

MM
)t[V ar(�̂

S
� �̂

MM
)]�1(�̂

S
� �̂

MM
) (1)

where �̂
S
and �̂

MM
represent respectively the S- and MM-estimators of � (with a given Gaussian

e¢ ciency). Since the Generalized Hausman statistic is asymptotically distributed as a �2p, where p is

the number of covariates, it is possible to set an upper bound above which the estimated parameters

can be considered as statistically di¤erent: if the value of H is above �2p;(1��) (where � is the given

signi�cance level), the di¤erence between �̂
S
and �̂

MM
(and hence the lack of robustness of MM) is

too large with respect to the gain in e¢ ciency.

For this testing procedure to be operational, we need an estimate of the variance of the di¤erence

(�̂
S
� �̂

MM
) that remains consistent under heteroskedasticity and/or asymmetry. This paper aims

at developing a modi�ed Hausman testing procedure allowing not only to compare S-estimators with

MM-estimators (with a given e¢ ciency level), but also to detect the presence of outliers by comparing
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S-estimators with non-robust LS-estimators (a limit case of MM). The structure of the paper is the

following: after the �rst introductory section, in Section 2 we develop the robustness test. In Section

3 we run some simulations to observe its behavior in �nite samples and in Section 4 we conclude.

2 General testing procedure

Consider the regression model

Yi = Xt
i � + "i

where Yi is the dependent variable, Xi is the ((p+1)� 1) vector of covariates observed for i = 1; :::; N

and � is the dispersion of ". To estimate parameter column vector �, a measure s of the dispersion

of the residuals ri(�) = Yi �Xt
i � for 1 � i � n is minimized. The regression estimate �̂0 can then be

de�ned by

�̂0 = argmin
�

s(r1(�); :::; rn(�)): (2)

In the case of LS, the measure of dispersion that is minimized is the (squared root of the) variance. The

problem with LS is that an excessive importance is awarded to observations with very large residuals

and, consequently, the estimated parameters are distorted if outliers are present. To take this into

account, Rousseeuw and Yohai (1984) propose to minimize another measure of dispersion s of the

residuals, an M-estimator of scale (s), de�ned as the solution to

1

n

nX
i=1

�0(
ri(�)

s
) = � (3)

where � = E[�0(Z)] with Z � N(0; 1) where �0(�) function is even, non decreasing for positive values

and less increasing than the square. This is equivalent to solving

3



8>><>>:
min
�
s(r1(�); :::; rn(�))

s.t. 1n
nP
i=1

�0

�
Yi�Xt

i �
s

�
= �

(4)

yielding solutions �̂0 and �̂ such that

8>>><>>>:
1
n

nP
i=1

�00

�
Yi�Xt

i �̂0
�̂

�
Xt
i = 0

1
n

nP
i=1

�0

�
Yi�Xt

i �̂0
�̂

�
= �

(5)

where �00 is the �rst derivative of �0. If �0 is the square function (and � = 1), this becomes a standard

LS maximization problem.

The choice of �0(�) is crucial to guarantee robustness and high Gaussian e¢ ciency. The function �0

usually used in (3) is the Tukey Biweight function de�ned as

�0(u) =

8>><>>:
k2

6

�
1�

h
1�

�
u
k

�2i3�
if juj � k

k2

6 if juj > k

. (6)

If the tuning parameter k is set at 1:547, it can be shown that the breakdown point (i.e. the maximal

contamination an estimator can withstand before breaking) reaches 50%. The Gaussian e¢ ciency is

however rather low (28%). To increase the e¢ ciency, Rousseeuw and Yohai (1984) and Yohai (1987)

introduced MM-estimators that combine a high-breakdown point and high e¢ ciency. These estimates

result from minimizing a loss function of the residuals
Pn

i=1 �(
ri(�)
�̂ ) where parameter � is set at the

value estimated by the S-estimator (�̂) and, as �0(�), the function �(�) is even, non decreasing for

positive values and less increasing than the square with �(�) � �0(�). The estimate �̂ is de�ned by:

�̂ = argmin
�

nX
i=1

�(
ri(�)

�̂
).

Values �̂, �̂0 and �̂ are such that
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8>>>>>>><>>>>>>>:

1
n

nP
i=1

 
�
Yi�Xt

i �̂
�̂

�
Xt
i = 0

1
n

nP
i=1

�00

�
Yi�Xt

i �̂0
�̂

�
Xt
i = 0

1
n

nP
i=1

�0

�
Yi�Xt

i �̂0
�̂

�
= �

(7)

where  is �0, the �rst derivative of �.

It is common to also use a Tukey Biweight �(�) function for the �nal MM-estimator where the tuning

constant can be modi�ed to attain a Gaussian e¢ ciency much higher than 28%. For example, if

k = 4:685, the Gaussian e¢ ciency is 95% and if k = 6:256 it is 99%. For the sake of clarity, we denote

by �0 (and �
0
0) the Tukey Biweight function (and its �rst derivative) in which the tuning parameter

is set to 1:547, the function used for the preliminary S-estimator. On the other hand, we use the

general notation of � (and  ) for the Tukey Biweight function (and its �rst derivative) used in the

�nal estimator of the MM where tuning parameter is set according to the desired Gaussian e¢ ciency.

It might thus be tempting to only consider highly e¢ cient MM-estimators. This is not advised since

the associated bias might be large even if the estimator does not break (see Maronna et al. 2006). As

a consequence, it is of the utmost importance to �nd the highest e¢ ciency without paying the price of

an excessive bias. The test we propose hereunder can be used to achieve this as it allows to determine

which MM-estimators are statistically di¤erent from S (and hence excessively biased).

From (7) and as shown by Croux et al. (2003), MM-estimators are �rst-order equivalent with exactly

identi�ed Generalized Method of Moments estimators (GMM) for # = (�t; �t0; �)
t with moment function

mi (for observation i)

mi(#) =

0BBBBBB@
 ("i)Xi

�00("0i)Xi

�0("0i)� �

1CCCCCCA , from here on abbreviated by

0BBBBBB@
 iXi

�00iXi

�0i � �

1CCCCCCA
where "i =

Yi�Xt
i �

� and "0i =
Yi�Xt

i �0
� . To clarify notations, we chose to denote by �0 the regression

parameter that is estimated by the S-estimator and by �, the parameter estimated by MM.
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Following Hansen (1982), Croux et al. (2008) show that #̂ has a limiting normal distribution given by

p
N(#̂� #) �! N(0; V )

where, de�ning G = E
h
@mi(#)
@#t

i
and 
 = E[mi(#)m

t
i(#)]; the asymptotic variance V is

V = G�1
(Gt)�1 (8)

Since 
 = E

0BBBBBB@
 2iXiX

t
i  i�

0
0iXiX

t
i  i�0iXi

�00i iXiX
t
i (�00i)

2
XiX

t
i �00i�0iXi

�0i iX
t
i �0i�

0
0iX

t
i (�0i)

2 � �2

1CCCCCCA

andG�1 = �

0BBBBBB@
�[E( 0iXiX

t
i )]

�1 0 ��[E( 0iXiX
t
i )]

�1E( 0iXi"i)[E(�
0
0i"0i)]

�1

0 �[E(�000iXiX
t
i )]

�1 ��[E(�000iXiX
t
i )]

�1E(�000iXi"0i)[E(�
0
0i"0i)]

�1

0 0 �[E(�00i"0i)]
�1

1CCCCCCA
de�ning

A = �[E( 0iXiX
t
i )]

�1;

a = AE( 0iXi"i)[E(�
0
0i"0i)]

�1;

B = �[E(�000iXiX
t
i )]

�1 and

b = BE(�000iXi"0i)[E(�
0
0i"0i)]

�1,

(8) yields the asymptotic variances and covariances i.e.

V ar(�̂
MM

) = AE( 2iXiX
t
i )A� aE( i�0iXt

i )A�AE( iXi�0i)a
t + aE((�0i)

2 � b2)at

V ar(�̂
S
) = BE((�00i)

2XiX
t
i )B � bE(�00i�0iXt

i )B �BE(�00i�0iXi)b
t + bE((�0i)

2 � b2)bt

Cov(�̂
S
; �̂
MM

) = AE( i�
0
0iXiX

t
i )B � aE(�00i�0iXt

i )B �AE( iXi�0i)b
t + aE((�0i)

2 � b2)bt.

Estimating the (co)variances by dV ar(�̂MM
); dV ar(�̂S) and dCov(�̂S ; �̂MM

), it is straightforward to

compare the S-estimator with the MM-estimator by using the Generalized Hausman statistic de�ned

by (1) with V ar(�̂
S
� �̂

MM
) = V ar(�̂

S
) + V ar(�̂

MM
)� 2Cov(�̂

S
; �̂
MM

) i.e.

H = (�̂
S
� �̂

MM
)t[dV ar(�̂S) + dV ar(�̂MM

)� 2dCov(�̂S ; �̂MM
)]�1(�̂

S
� �̂

MM
) (9)
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In this way, we test the null hypothesis that an MM-estimator with a given level of e¢ ciency is not

statistically di¤erent from an S-estimator and hence should be preferred due to its higher e¢ ciency.

Since Gervini and Yohai (2002) showed that, in the presence of outliers, only slopes can be satis-

factorily estimated when the error distribution is asymmetric, the test will be based on the comparison

of the slope estimated parameters and the constant will be disregarded.

2.1 Outlier identi�cation test

Since LS is the special case of the MM-estimator, where, in the corresponding Tukey biweight function,

k �! 1, �(") = "2

2 , thus  (") = " and  0(") = 1, equation (9) can be directly used to test if outliers

have distorted classical regression parameters. The values of A and a become A = �[E(XiX
t
i )]

�1 and

a = AE(Xi"i)[E(�
0
0i"0i)]

�1 while those of B and b remain unchanged. As a consequence,

V ar(�̂
LS
) = AE("2iXiX

t
i )A� aE("i�0iXt

i )A�AE("iXi�0i)a
t + aE((�0i)

2 � b2)at

Cov(�̂
S
; �̂
LS
) = AE("i�

0
0iXiX

t
i )B � aE(�00i�0iXt

i )B �AE("iXi�0i)b
t + aE((�0i)

2 � b2)bt

while V ar(�̂
S
) remains unchanged.

By replacing dV ar(�̂MM
) by dV ar(�̂LS) and dCov(�̂S ; �̂MM

) by dCov(�̂S ; �̂LS) in (9) we can check
whether the di¤erence between the coe¢ cients in the S- and LS-estimators is systematic or not. If the

null is rejected, the in�uence of the outliers is such that the gained e¢ ciency associated with a classical

estimator is not su¢ cient to balance the corresponding bias (due to outliers). In such a case, a robust

estimator should be preferred. On the other hand, if it is not rejected, the in�uence of the outliers

is clearly rather limited, implying that a classical estimator will be only mildly biased and should be

preferred to a robust one given its higher statistical precision.

In the particular case of symmetric errors and homoskedasticity, this test simpli�es to the test

proposed by Dehon et al. (2009a) i.e.

Proposition 1 If the error term is symmetric and homoskedastic and k �!1, then Cov
�
�̂
S
; �̂
LS
�
=

V ar
�
�̂
LS
�
.

Proof. When k �!1, �(") = "2

2 , thus  (") = " and  0(") = 1.

From the symmetry and homoskedasticity hypotheses, a = b = 0, thus A = �[E( 0iXiX
t
i )]

�1 =

�[XiX
t
i ]
�1and B = �[E(�000iXiX

t
i )]

�1 = �E(�000i)
�1[XiX

t
i ]
�1 and

Cov(�̂
S
; �̂
MM

) = AE( i�
0
0iXiX

t
i )B = �[XiX

t
i ]
�1E( i�

0
0iXiX

t
i )�E(�

00
0i)

�1[XiX
t
i ]
�1

= �[XiX
t
i ]
�1E

�
"
�
"5

k4 �
2"3

k2 + "
��

XiX
t
i :�
n
E
�
5"4

k4 �
6"2

k2 + 1
�o�1

[XiX
t
i ]
�1

= �2[XiX
t
i ]
�1 � 1

k4E
�
"6
�
� 2

k2E
�
"4
�
+ E

�
"2
��
XiX

t
i :
�
5
k4E

�
"4
�
� 6

k2E
�
"2
�
+ 1
��1

[XiX
t
i ]
�1
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= �2[XiX
t
i ]
�1 � 15

k4 �
6
k2 + 1

�
:
�
15
k4 �

6
k2 + 1

��1
XiX

t
i [XiX

t
i ]
�1

= �2[XiX
t
i ]
�1 = V ar

�
�̂
LS
�
:

From there, H = (�̂
S
� �̂

LS
)t[V ar

�
�̂
S
�
�V ar

�
�̂
LS
�
]�1(�̂

S
� �̂

LS
) which is the test statistic proposed

by Dehon et al. (2009a).

In the following section, we run some simulations to check how the test behaves in �nite samples.

Before that, we brie�y present the a robust alternative test that is available in the literature (see

Yohai et al., 1991). It will serve as the comparison benchmark for the simulations. The test proposed

by Dehon et al. (2009a) is not considered in the simulation since it is nothing else than a speci�c case

of the one we propose here.

3 Simulations

3.1 The Yohai, Stahel and Zamar (1991) test

In 1991, Yohai, Stahel and Zamar developed a test (YSZ) to compare the behavior of an S-estimator

with that of an MM-estimator (with a given e¢ ciency), based on the scale of the residuals. The test

statistic they propose is

T =
2n(�̂SMM � �̂S)
�0d2(�̂

S)2
(10)

where n is the number of observations, �̂SMM is the M-estimator of scale of the residuals (de�ned

in eq. 3) �tted by the MM-estimator, �̂S is the M-estimator of scale of the residuals �tted by the

S-estimator, ~ri are the robust standardized residuals �tted by the S-estimator, �0 =
��000 (~ri)

�̂SMM��
0
0(~ri)~ri

and

d2 = 1
n�(

�0(~ri)
(1=n)��00(~ri)

� �00(~ri)
(1=n)��000 (~ri)

)2:

Using standard asymptotic theory, they show that T is asymptotically distributed as a �2p+1.

However, examining (10) two drawbacks of the test emerge: �rst, the test focuses on the bias of the

MM-estimator. Second, it is based on the assumption of a single scale of the residuals and is thus not

appropriate in case of heteroskedasticity and/or asymmetry in the error term. This test will serve as

the benchmark in the simulations since it is the one commonly used to test whether an MM-estimator

(with a given level of e¢ ciency) can be safely used.

3.2 Size and power of the test

In this section, we consider two aspects of the behavior of the test we propose.

First, we study its �nite-sample behavior (under the null hypothesis of no outlier contamination) by

comparing: i) an MM- to an S-estimator and ii) an LS- to an S-estimator. The loss function (�0) used

8



to compute the S-estimator (with a breakdown point of 50%) and the MM-estimator with a Gaussian

e¢ ciency set to 95% where � is Tukey�s biweight function given in (6) with the tuning parameter

set respectively to k = 1:546 and k = 4:685. We check the size of the test under three assumptions

on the error term: i) homoskedastic normality, ii) heteroskedastic normality and iii) homoskedastic

asymmetry.

Second, we investigate the behavior of the test under contamination. The power is computed

considering the most in�uential type of outliers (i.e. bad leverage points).

For the size of the test we simulate the data under three di¤erent sampling schemes for the error

terms (homoskedastic normality, heteroskedastic normality and asymmetry) and three di¤erent sample

sizes (n = 500, n = 1000 and n = 2000).

More precisely, the data generating process is

yi = �0 + �1xi1 + �2xi2 + "i (11)

for i = 1; : : : ; n. The regression parameters �0; �1; �2 are set to 1. The explanatory variables x1 and

x2 are generated as i:i:d: standard normal random variables. The error term " is generated according

to three di¤erent designs:

i Homoskedastic Normal errors : "i is generated from a standard normal distribution for i =

1; : : : ; n;

ii Heteroskedastic Normal errors: "i = jxi1jui for i = 1; : : : ; n where u is generated from a standard

normal distribution;

iii Homoskedastic Asymmetric errors: "i is generated from a log-normal with mean zero for i =

1; : : : ; n.

For each case, we generate m = 5000 samples of n observations.

The size of the test we propose and of that of Yohai et al. (1991), are reported in Table 2.

These sizes are measured by counting the percentage of times (over repeated samples) that the

test statistic is larger than a given percentile (95th in our case) of a �2 distribution with respec-

tively p and (p + 1) degrees of freedom. Ideally they should therefore be close to 5%. The QQ-

plots comparing empirical and theoretical quantiles of the �2 in each situation can be found at

"http://homepages.ulb.ac.be/~vverardi/graphs/QQplots.pdf". From Table 2, it is clear that under

Gaussian and asymmetric assumptions for the error term, the empirical level of the two versions of our

test (LS versus S and MM versus S) is very close to the theoretical value of 5%. The same conclusion

holds for the Yohai, Stahel and Zamar test under the assumption of normality but not in the case

9



of asymmetry. The situation is not as good under the speci�cation of heteroskedastic errors that we

used in the simulations since the level of our test is adequate for the comparison between the LS- and

S-estimators but is slightly higher than 5% for the comparison with the MM-estimator. However, the

YSZ test yields an even higher di¤erence between empirical and theoretical levels. These results also

show that since the test is asymptotic, its behavior improves when the sample size increases.

[INSERT TABLE 1 HERE]

The second part of this section is devoted to the study of the power of the test under contamination.

It is well-known that points outlying in the x-dimension (design space) and that lie far away from the

regression line, called leverage points, are the most �dangerous� outliers (see Dehon et al., 2009b).

We therefore focus on this type of outliers in the simulations. With other types of outliers the test we

propose behaves even better but its di¤erence with respect to the benchmark becomes smaller.

For the simulations, observations were generated according to model

yi = �0 + �1xi + "i (12)

for i = 1; : : : ; n where both parameters are equal to one. The sample sizes used are n = 500; 1000 and

2000 and the speci�cations for the error term are the same as for previous simulations. For all of the

replications we introduced a small percentage of contamination (5%). To generate the contamination,

we replaced 5% of the x-values by an integer constant that increases in succession from 0 to 9. The

biases of the LS-, MM- and S-slope estimators are computed for all types of bad leverage outliers and

presented in Figure 1 (where n = 1000 and the error term is assumed symmetric and homoskedastic).

On the left panel, the bias of LS (dotted line) is compared to that of S (dashed line) while on the right

one it is the bias of MM (dotted line) that is compared to that of S (dashed line). The percentage of

rejection of the null is represented by the plain line.

[INSERT FIGURE 1 HERE]

The left panel of Figure 1 shows that the bias of the LS-estimator increases rapidly when the leverage

e¤ect becomes substantial (i.e. for x-coordinates ranging from 2 to 9). On the other hand, the

bias of the S-estimator remains very small, which is not surprising as the S-estimator is very robust.

The percentage of rejection of the null of no contamination increases quickly to reach 100% for an x-

coordinate of 3. Though we only present the homoskedastic case here, whatever the scenario (normality,

heteroskedasticity or asymmetry) the test behaves comparably well. When the x-coordinate of the

contamination is smaller than 1, the percentage of rejection (hence the size of the test) is close to 5%.

The right panel of Figure 1 shows that the bias of the MM-estimator starts increasing proportionnally

to the leverage e¤ect. However, from a certain point on, it decreases. The reason for this is that the
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MM is a redescending estimator: the importance awarded to residuals increases up to a point and then

starts decreasing toward zero. The in�uence of outliers is therefore signi�cant only if they are located

in the neighborhood of this point which is at 4 in this case.

To get a clearer idea of the power of the test, we generated 1000 samples for each type of contamination,

and for each of them computed the percentage of rejection of the null. Results are presented in Figure

2. On the left panel, the test compares S to LS, while on the right it compares S to MM.

[INSERT FIGURE 2 HERE]

The percentage of rejection for two di¤erent sample sizes (n = 500 and n = 2000) and the three

scenarios for the error term are plotted in Figure 2. As expected, the test obtained by comparing the

LS- and S-estimators rejects the null hypothesis more rapidly when the sample size is larger (for all

scenarios). The heteroskedastic case seems to yield the least powerful result.

Concerning the comparison between the MM- and the S-estimators, again the null hypothesis is

more rapidly rejected when the sample size is larger. The test behaves very well under normality or

asymmetry, but is seems that the detection of outliers is more di¢ cult with heteroskedastic errors (see

Table 3).

[INSERT TABLE 2 HERE]

[INSERT TABLE 3 HERE]

4 Conclusion

The objective of the paper is to extend Hausman�s (1978) speci�cation test to outlier detection. More

precisely, we adopt a similar approach to compare an estimator (S) that withstands outlier contamina-

tion (and is rather ine¢ cient) with a more e¢ cient but potentially inconsistent one (MM). We believe

that the tradeo¤ between consistency and e¢ ciency will enable to make an informed decision as to

which estimator should be preferred. From a practical point of view, what we suggest is to start by

testing if regression coe¢ cients estimated by least squares (a limit case of MM), have not been exces-

sively in�uenced by the presence of outliers. If they have not, least squares is the preferable method.

Otherwise, we suggest to compare an S with several MMs with di¤erent e¢ ciencies. The estimator

that will ultimately be retained is the one that, while not rejecting the null, has the highest e¢ ciency.
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Figure 1: Bias of the estimators
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Figure 2: Power of the test.
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Table 1: Percentage of rejections without contamination at � = 5%

LS versus S MM95 versus S

Size of the test with � = 5% H YSZ H YSZ

i.i.d. normal errors n = 500 6.08 3.12 8.86 6.60

n = 1000 4.38 2.66 6.72 5.88

n = 2000 5.74 5.38 5.64 5.54

Heteroskedastic errors n = 500 5.30 0.12 11.80 21.30

n = 1000 4.46 0.80 11.06 23.50

n = 2000 8.22 8.48 7.84 21.64

Asymmetric errors n = 500 4.90 99.98 4.04 100

n = 1000 4.62 100 4.30 100

n = 2000 4.68 100 4.40 100
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Table 2: Percentage of rejection with 5% of bad leverage points

Normality 0 1 2 3 4 5 6 7 8 9

n = 500 LS 6.9 8.0 39.2 81.6 96.7 99.8 100 99.8 100 100

MM 6.8 7.0 18.4 38.9 46.9 20.2 11.6 6.1 7.3 5.3

n = 1000 LS 6.9 8.3 55.7 96.1 99.7 99.9 100 100 100 100

MM 6.3 6.1 30.8 66.5 85.6 44.0 8.4 4.7 5.6 4.4

n = 2000 LS 5.6 15.2 90.5 100 100 100 100 100 100 100

MM 5.3 9.2 51.6 95.5 99.8 73.0 16.5 5.8 4.4 4.3

Heteroscedastic errors 0 1 2 3 4 5 6 7 8 9

n = 500 LS 15.0 15.3 22.8 46.8 77.3 91.3 95.2 97.2 98.2 98.1

MM 14.4 14.2 16.5 13.8 10.9 11.8 13.3 13.2 11.1 12.5

n = 1000 LS 11.1 10.9 41.6 79.8 95.8 97.8 98.9 99.0 99.7 100

MM 11.2 12.7 31.8 7.3 9.3 11.3 9.7 11.9 10.0 9.2

n = 2000 LS 10.1 8.4 47.3 91.7 98.2 99.8 99.8 99.4 99.8 99.9

MM 9.6 12.4 32.6 13.9 11.3 9.6 7.3 10.1 8.6 8.9

Asymmetry errors 0 1 2 3 4 5 6 7 8 9

n = 500 LS 3.0 4.0 22.6 76.1 96.8 99.4 99.9 99.9 99.9 100

MM 3.9 3.4 15.9 37.6 25.1 12.2 7.5 4.0 2.8 4.2

n = 1000 LS 4.8 10.5 68.0 98.7 99.8 100 100 100 100 100

MM 4.5 15.8 57.5 61.4 32.3 15.2 7.8 5.3 4.8 5.9

n = 2000 LS 5.7 18.5 95.6 99.9 100 100 99.9 100 100 100

MM 5.5 26.4 89.5 93.5 59.7 27.7 11.2 7.6 6.1 5.7
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Table 3: Bias of the LS-, MM- and S-slope estimator with 5% of bad leverage points

Normality 0 1 2 3 4 5 6 7 8 9

n = 500 LS -0.01 -0.06 -0.20 -0.35 -0.49 -0.60 -0.68 -0.74 -0.80 -0.83

MM -0.01 -0.05 -0.13 -0.20 -0.25 -0.24 -0.14 -0.03 -0.01 -0.01

S 0.00 -0.03 -0.05 -0.04 -0.02 -0.01 0.00 0.00 -0.01 0.00

n = 1000 LS 0.00 -0.05 -0.17 -0.31 -0.44 -0.56 -0.64 -0.71 -0.76 -0.80

MM 0.00 -0.04 -0.12 -0.19 -0.25 -0.23 -0.12 -0.02 0.00 0.00

S 0.00 -0.02 -0.04 -0.04 -0.02 -0.01 0 -0.01 0.00 0.00

n = 2000 LS 0.00 -0.05 -0.17 -0.31 -0.45 -0.56 -0.65 -0.71 -0.77 -0.81

MM 0.00 -0.04 -0.11 -0.18 -0.22 -0.18 -0.06 -0.01 -0.01 0.00

S 0.00 -0.02 -0.04 -0.04 -0.01 0.00 0.00 -0.01 0.00 -0.01

Heteroscedastic errors 0 1 2 3 4 5 6 7 8 9

n = 500 LS 0.00 -0.03 -0.13 -0.27 -0.40 -0.51 -0.60 -0.67 -0.72 -0.77

MM 0.00 -0.05 -0.12 -0.12 -0.09 -0.06 -0.04 -0.02 -0.01 0.00

S 0.00 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01

n = 1000 LS -0.01 -0.06 -0.19 -0.34 -0.48 -0.59 -0.67 -0.74 -0.79 -0.83

MM -0.01 -0.08 -0.16 -0.10 -0.04 -0.02 -0.01 -0.01 -0.01 -0.01

S 0.00 -0.05 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 0.00 -0.01

n = 2000 LS -0.01 -0.06 -0.17 -0.32 -0.45 -0.56 -0.65 -0.72 -0.77 -0.81

MM -0.01 -0.07 -0.13 -0.08 -0.04 -0.03 -0.01 -0.01 -0.01 -0.01

S -0.01 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

Asymmetry errors 0 1 2 3 4 5 6 7 8 9

n = 500 LS -0.01 -0.03 -0.12 -0.26 -0.39 -0.50 -0.59 -0.66 -0.72 -0.76

MM 0:00 -0.01 -0.07 -0.11 -0.13 -0.12 -0.09 -0.05 -0.03 -0.02

S 0:00 -0.01 -0.02 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01

n = 1000 LS -0.01 -0.05 -0.17 -0.30 -0.44 -0.55 -0.64 -0.71 -0.76 -0.80

MM 0:00 -0.03 -0.08 -0.10 -0.08 -0.05 -0.03 -0.02 -0.02 -0.01

S 0:00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

n = 2000 LS 0:00 -0.06 -0.19 -0.34 -0.47 -0.58 -0.67 -0.74 -0.79 -0.83

MM -0.01 -0.03 -0.08 -0.10 -0.08 -0.05 -0.03 -0.02 -0.01 -0.01

S -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
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